Magnetostatics

Electric charges are source of electric fields. An electetdfexerts force on an
electric charge, whether the charge happens to be movingesta

One could similarly think of a magnetic charge as being the@®of a magnetic
field. However, isolated magnetic charge ( or magnetic moleg) have never
been found to exist. Magnetic poles always occur in pairg0les) — a north
pole and a south pole. Thus, the region around a bar magneh&gaetic field.
What characterizes a magnetic field is the qualitative eatdirthe force that it
exerts on arelectric charge The field does not exert any force on a static charge.
However, if the charge happens to be moving (excepting imextion parallel to
the direction of the field) it experiences a force in the maigrfes|d.

It is not necessary to invoke the presence of magnetic poldsctuss the source
of magnetic field. Experiments by Oersted showed that a niegneedle gets
deflected in the region around a current carrying condudibe direction of de-
flection is shown in the figure below.
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Thus a current carrying conductor is the source of a magfiefit. In fact, a
magnetic dipole can be considered as a closed current loop.

Lorentz Force : B B
We know that an electric field exerts a force/£Z on a charge. In the presence
of a magnetic fieldB, a charge; experiences an additional force

F, = qu X B
wherev is the velocity of the charge. Note that
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e There is no force on a charge at rest.

e Aforce is exerted on the charge only if there is a componetit@fmagnetic
field perpendicular to the direction of the velocity, itee component of the
magnetic field parallel ta’ does not contribute té;,,.

—

e 7 F, =0, which shows that the magnetic force does not do any work.
In the case where both and B are present, the force on the chargis given by
F=q(E+7xB)

This is calledLorentz force after H.E. Lorentz who postulated the relationship.
It may be noted that the force expression is valid even wheand B are time
dependent.
Unit of Magnetic Field
From the Lorentz equation, it may be seen that the unit of reagrield is
Newton-second/coulomb-meter, which is known as a Tesla(He unit is oc-
casionally written as Weberfiras the unit of magnetic flux is known as Weber).
However, Tesla is a very large unit and it is common to measlie terms of a
smaller unit called Gauss,

IT=10"G

It may be noted thaf is also referred to as magnetic field of induction or simply
as the induction field. However, we will use the term “magnégld”.

Motion of a Charged Particle in a Uniform Magnetic Field

Let the direction of the magnetic field be taken to be z- dioeGt

B = Bk
we can write the force on the particle to be

- dv
F,=m—= x B
m di qv
The problem can be looked at qualitatively as follows. Weremolve the motion
of the charged particle into two components, one paralld#iéanagnetic field and
the other perpendicular to it. Since the motion paralleh®srnagnetic field is not
affected, the velocity component in the z-direction rersaonstant.



where is the initial velocity of the particle. Let us denote theagty component
perpendicular to the direction of the magnetic fielday Since the force (and
hence the acceleration) is perpendicular to the directim@locity, the motion in

a plane perpendicular t8 is a circle. The centripetal force necessary to sustain
the circular motion is provided by the Lorentz force

2
muvi

R =lq|v.B
where the radius of the circl® is called the Larmor radius, and is given by
. muv
lq| B

The time taken by the particle to = TJ_
complete one revolution is

21 R —

T=""

V1 ® B
The cyclotron frequency. is given
by -

2t |q|B <) B Magnetic field into the page.
TT T T Figure shows directions of force and veloc

for a positive charge.

Motion in a Magnetic Field — Quantitative
Let the initial velocity of the particle b&. we may take the direction of the
component of; perpendicular taB as ther— direction, so that

ﬁ - (qu'? 07 uZ)

Let the velocity at time& be denoted by

U = U0 + vy ] + vk

we can express the force equation in terms of its cartesianpoaent

dv,

m% =q(v,B, —v,B,) = qu,B
d

mZ q(v,By — v, B,) = —qu,B
dt
dv,

m = q(v.By —v,B;) = 0
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where we have uselt, = B, = 0 andB, = B.
The last equation tells us that no force acts on the partidiea direction in which
B acts, so that

v, = constant = u,

The first two equations may be solved by converting them iet@sd order differ-
ential equatons. This is done by differentiating one of theations with respect
to time and substituting the other equation in the resulsiegpnd order equation.
For instance, the equation foy is given by

d?v, _ qBdv, ¢*B?

ar ~ m o dt | om?°
The equation is familiar in the study of simple harmonic raoti The solutions
are combination of sine and cosine functions.

v, = Asinw.t + B cosw,t

where
_ 4B

m

is called thecyclotron frequencgnd A and B are constants. These constants have
to be determined from initial conditions. By our choice ofnday axes, we have

We

v (t =0) = u,

so thatB = u,. Differentiating the above equation far,,

dv, .
y Aw, cosw.t — Bw, sin w.t
qB
= —U, = W
m Yy Yy

Sincev, = 0 att = 0, we haveA = 0. Thus, the velocity components at timhe
are given by

Uy = Uy COSWL

) ) T
v, = —Ugsinw.t = u,sin(w.t + 5)

which shows that,, andv, vary harmonically with time with the same amplitude
but with a phase difference af/2. Equation of the trajectory may be obtained by
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integrating the equations for velocity components

Uy .

x(t) = —sinw.t+ xg
We
/u’(L'

y(t) = —cosw.t+ Yo
wC

2(t) = u,t + 2o

wherexg, o and z, are constants of integration representing the initial f@si
of the particle. The equation to the projection of the tragecin the x-y plane is
given by
2 o U
(—20)"+ (Y —w) = —
wc
which represents a circle of radiug/w,., centered about,, yo). As the z- com-
ponent of the velocity is constant, the trajectory is a helix

Helical motion of a charged particle
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A plot of the motion of a charged particle in a constant magnet field.

Motion in a crossed electric and magnetic fields
The force on the charged particle in the presence of bothreleend magnetic
fields is given by

F=q(E+7xB)
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Let the electric and magnetic fields be at right angle to edletrpso that,

— —

E-B=0

If the particle is initially at rest no magnetic force acts e particle. As the
electric field exerts a force on the patrticle, it acquireslaci¢y in the direction of
E. The magnetic force now acts sidewise on the patrticle.

For a quantitative analysis of the motion, fetoe taken along the x-direction and
B along z-direction. As there is no component of the force glttre z-direction,
the velocity of the particle remains zero in this directidrhe motion, therefore,
takes place in x-y plane.

The equations of motion are

dv,, o .

md—vt = ¢(E+7Ux B), =qF + qBuv, (1)
dvy o o

mﬁ = Q(E + v X B)y = —QB/UI (2)

As in the earlier case, we can solve the equations by diftermg one of the
equations and substituting the other,

d?v, d 2B?
v _ pdv, @B
m

" Ty
which, as before, has the solution

vy = Asinw,t

with w. = ¢B/m. Substituting this solution into the equation tgr we get, using
Eqgn. (1)

E  m dv,
v, = ——+-——
Y B ¢B dt
E
= 3 + q%ch coS w,t

Sincev, = 0 att = 0, the constanl = E¢/mw. = E/B, so that Thus we have

: = oSl et
v g Sinw

= —(cosw.t —1
v B( s )
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The equation to the trajectory is obtained by integratireyabove equation and
determining the constant of integration from the initiabpgmn (taken to be at the
origin),

— 1 — coswgt
x ch( cos w,t)

y = (sinwet — wet)
wC

The equation to the trajectory is

E \* N Et\®  E?
x — - — | ===
Bu. "B B2

which represents a circle of radius

B
" Buw,

R

whose centre travels along the negative y direction withrestant speed

E
Vo = E
The trajectory resembles that of a point on the circumfezeri@ wheel of radius
R, rolling down the y-axis without slipping with a speegl. The trajectory is
known as a cycloid.



Cycloidal motion of a charged particle
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Exercise : Find the maximum value of attained by the particle during the cy-
cloidal motion and determine the speed of the patrticle at paints. (Ans.
Timae = 2E/Bw,. spee®FE/B.)

Current Density :

The current in a wire is a measure of the amount of charge flpwinough any
point of the wire in unit time. If the charge density in the &vis )\, the current is
given byl = \v wherev is the drift velocity of the charge carriers. The carriers
travel a distancell = wvdt in time dt so that the amount of charge that flows in
time dt through any point of the wire i8Q) = Idt = Avdt. The unit of current is
Coulomb per second, known as Ampere.

When we consider motion of charges on a surface or in a voluhgecharges
move in all directions and we have to consider average visci We need to
introduce the concept of a charge sensity which is then avegciantiy at a point
in the material. For instance, consider charges flowing tingedsion.



If we consider a ribbon along the
direction of flow in the surface, we
could talk of the amount of charg
flowing past a lengthil; normal to
the direction of flow at a point. Th
surface current density that we talk A
of at this point is thecurrent per
unit length oriented perpendicular
to the flow at this point.

Thus the current density is

o

Flow Direction

K==
dl

The unit obviously is Ampere per meter. dfis the surface charge density and
is the average velocity, then the amount of charge flowing thadength element
in time dt is clearlyd = odl, vdt. The current flowing past the length element
isdQ/dt = odl, v so that the current density Is = owv.

The Lorentz force on charges in the surface is

In three dimensions, the concept is
very similar. One has to consider the

ement oriented perpendicular to
direction of flow.

which has a direction perpendicular to the surface elemeaingding in the direc-
tion of flow. The Lorentz force acting on the charges in theunoé is then given

by
P / (pdr)i x B = / (J x Bydr



Equation of Continuity :
The current through any closed volume is thus given by

]:/JdSl:/fdg
S S

whereS is the surface bounding the volume. Using divergence timeovee may
conver the surface integral to a volume integral over themjgnce, so that

I:/V-de

We know thatV - .J gives theoutwardflux through the surface. The net outward
flux must result in a net decrease of charges within the volumether words,

we must have, p 5
7 14

S Jdr = —— dr = — | —d

/V Jdr dt/pT 8tT

As the relation is true for arbitrary volume, we have the d@mumeof continuity

dp

VTt =

0

In magnetostatics, we study effects of what are knowstaady current The
word steady in thius context does not mean stationary becawsent itself im-
plies that charges are moving in time. Steady implies thatrdte of flow is
constant so thal)p/0t = 0. For steady currents, the equation of continuity be-
comes

—

V-J=0

Biot- Savarts’ Law

We have seen that electrostatics was formulated on the bBsmapirical law of

Coulomb. The corresponding law for magnetostatics is Biatart’s law. which

provides an expression for the magnetic field due to a cuseginent. The field
dB at a position” due to a current segmemtfl is experimentally found to be
perpendicular tall and7. The magnitude of the field is

e proportional to the length d/ | and to the current and to the sine of the
angle betweemn anddl.

e inversely proportional to the square of the distancéd the point P from the
current element.
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Mathematically,

dl x 7 —

r

dB o I

In SI units the constant of propor-
tionality is po/4m, wherey is the

permeability of the free space. The
value ofp is r

fio = 47 x 1077 N/amp’

The expression for field at a point P
having a position vector with re-
spect to the current element is

B = Z—Ofdl it
™ r
For a conducting wire of arbitrary shape, the field is obtdibg vectorially adding
the contributions due to such current elements as per sogpiégn principle,

E(P) ,uo]/leT'

4 r2

where the integration is along the path of the current flow.
Example 1 : Field due to a straight wire carrying current

The direction of the field at P due to a current eleméris alongcfl x 7, which is
a vector normal to the page (figure on the left) and coming biit o

P
|
I
|
r |
a
|
- I
dl 0 !
(@]
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We have, .
dl x 7 |dlsing | .
2 r2 K
where the plane of the figure is taken as the x-y plane and tbetdin of outward
normal is parallel to z-axis. l& be the distance of the oint P from the wire, we
have

r = a/sinf
= acotf
dl = —(a/sin*0)do

Thus

dl x 7 _ sinf
r2
The direction of the magnetic field at a distanciEom the wire is tangential to a
circle of radiusa,as shown.

dok

®

Since the magnetic field due to all current elements at P ar@lglato the z-
direction, the field at P due to a wire, the ends of which makgesy, and¢, at
P is given by a straightforward integration
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ol [

B = sin 0dok
dma Jo,
ol 0, 7
= o [—cos 0], k
I .
— Mot [—cos by — cos ] k
dma

I .
= % [sin ¢y + sin ¢ k

Note that both the angles and¢, are acute angles.

If we consider an infinite wire (also called long straight&irwe haves); = ¢, =
/2, so that the field due to such a wire is

. I-
B = Mot
2ma

where the direction of the field is given by the Right hand rule

Exercise :
A conductor in the shape of an n-sided polygon of sidarries currenf. Calcu-
late the magnitude of the magnetic field at the centre of thygpo. [ Ans.

(toIn/ma)sin(m/n).]

Example 2 : Field due to a circular coil on its axis

Consider the current loop to be in the x-y plane, which is tagerpendicular to
the plane of the paper in which the axis to the loop (z-axes.liSince all length
elements on the circumference of the ring are perpendid¢alay the magnitude
of the field at a point P is given by

,LL()] dl
47 r2

dB =
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The direction of the field due to ev-
ery element is in the plane of the pa-
per and perpendicular t as shown.
Corresponding to every elemert

on the circumference of the cwclp\/
there is a diametrically opposite el-
ement which gives a magnetic field
dB in a direction such that the com-*
ponent ofdB perpendicular to the ®

axis cancel out in pairs.
The resultant field is parallel to the axis, its directionfgealong the positive

z-axis for the current direction shown in the figure. The retffis

o I
B = ,uo /—cos@

I

_ ,uicos@/dl
4 r?

B ,uolcos€27m polacosf
A2 22

In terms of the distance of the point P and the radius we have

ol a?

B =

2 (a2 + 22)3/2

The direction of the magnetic field is determined by the fwlltg Right Hand
Rule.

If the palm of the right hand is curled

in the direction of the current, the
direction in which the thumb points

gives the direction of the magnetic

field at the centre of the loop. The

field is, therefore, outward in the fig-

ure shown.

Note that forz > a, i.e. the field due to circular loop at large distances is igive

by

pola? _ Hop

9223 2723
whereu = Iwa? is the magnetic moment of the loop. The formula is very simila
to the field of an electric dipole. Thus a current loop behdikesa magnetic
dipole.

B =
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Example 3:

A thin plastic disk of radiug? has a uniform surface charge densityThe disk is
rotating about its own axis with an angular velocityFind the field at a distance
z along the axis from the centre of the disk.

\/ 0

Z—axis

Solution :

The current on the disk can be calculated by assuming thémgtdisk to be
equivalent to a collection of concentric current loops. €ldar a ring of radius
r and of widthdr. As the disk is rotating with an angular speedthe rotating
charge on the ring essentially behaves like a current loopyiog currento -
2nrdr - w /2w = owrdr.

The field at a distancedue to this ring is

(owrdr) r?

Ho
dB =
2 (r2 + 22)3/2

The net field is obtained by integrating the above from Otor = R
R 3
R L —
2 Jo (r2422)3/2

Loow /Rr2+22 — 22
,
2 Jo (r2422)3/2

dr

The integral above may easily be evaluated by a substitutienr? 4 22, The
resultis
R? + 2272
B = pgow 7(]%2 PRI — 2z
The field at the centre of the disk & 0) is

B(z =0) = pupowR
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Exercise : Find the magnetic moment of the rotating disk of Example 7. ndA
TwR* /4]

Example 4 : Field of a solenoid on its axis

Consider a solenoid aV turns. The solenoid can be considered as stacked up
circular coils. The field on the axis of the solenoid can benfbby superposition

of fields due to all circular coils. Consider the field at P do¢hte circular turns
between: andz + dz from the origin, which is taken at the centre of the solenoid.
The point P is at = d. If L is the length of the solenoid, the number of turns
within z andz + dz is Ndz/L = ndz, wheren is the number of turns per unit
length.

The magnitude of the field at P due
to these turns is given by

oNIdz a®

%
dB =
2L a2+ (2 — d)?*?

The field due to each turn is along
k; hence the fields due to all turns
simply add up. The net field is

. NT 2 L/2 R
B = Ho a / dz 3/2 kz
2L Jorp a2 + (2 — d)?]
The integral above is easily evaluated by substituting
z—d = acotl

dz = —acosec’6dl

The limits of integration o area and as shown in the figure. With the above
substitution

— 16 7
B = _“02”[/ sin 0df = MO;[(cosoz—Cosﬁ)k

For a long solenoid, the field on the axis at points far remdveh the ends of
the solenoid may be obtained by substituting- 0° and = 180°, so that,

é = Mon[ff

The field is very nearly constant. For points on the axis faraeed from the ends
but outside the solenoid, ~ ( so that the field is nearly zero.
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Example 5:

shown in the figure.

Solution :

The field at P may be determined by superposition of fields dtieet two straight
line sections and the semicircular arc. The contributioa tuall three sections
add up as the field due to each is into the plane of the paper.

The field due to each straight line section is obtained byimitt;, = 90° and
@2 = 0°in the expression obtained in Example 5 above. The field deadh
wire is ol /4ra.

For the semi-circular arc, each length element on the cifetence is perpendic-
ular tor, the vector from the length element to the point P. Thus

\J

Barc - IU—OI d? all
47 r2
Hol /dl: L
4a? 4ra? 4a

The net field due to the current in the hairpin bend at P is

pol | pol
B="—"+"—"
2ra + 4a

Example 6 : Force between two long and parallel wires.
Force due to the first wire at the position of the second wigiven by

wherel: is a unit vecor out of the page.
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The force experienced by the second
wire in this field is

F = /([}xé)dl X F _
B
pwolily . -
S gwldQ(jxk)/dl
polils .
- dl
2md Z/

1 I,
Thus the force between the wires carrying current in the sdineetion is attrac-
tive and ispo I, I /27d per unit length.

Exercise :

Determine the magnetic field at the point P for the two geoeeshown in the
- I _
figures below. [Ans . (@)l /AR (b) X2 (I R2)9]

4’/TR1 R2

\J

(@)

(b)
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Example 7 :

Find the field at the centre of a co%
ductor shaped as shown in the figur
The curved sections are quadrants of
circles of radiia andb and the con- |

ductor carries a current p%-

Solution :

For straight segments AB and GID x 7 = 0 and there is no contribution to the
magnetic field. For the arcs BC and DA use cylindrical coaaitiss. For instance,
for the arc of radius, we haveil = —bdlgzbgz@, the minus sign is because the current
is in the clockwise direction, and= —bp so that

dl x 7= b2dod x p = —b*ddk
Similarly, for the smaller arc, since the current is coual@ckwise,
di x 7= a®dok

wheref is in the z-direction, i.e. perpendicular to the plane of éines. Using
Biot-Savart’s law, we get

., w/2
B = fol d¢(l_l)

dr Jo a b
_ el 1L
8 a b
Ampere’s Law

Biot-Savart's law for magnetic field due to a current elemsrdifficult to visu-
alize physically as such elements cannot be isolated frentiticuit which they
are part of. Andre Ampere formulated a law based on Oerseslwell as his
own experimental studies. Ampere’s law states thia¢ line integral of magnetic
field around any closed path equalgtimes the current which threads the surface
bounded by such closed patMathematically,

%B’ ' CZZ - ,uolenclosed (]-)
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In spite of its apparent simplicity, Ampere’s law can be usedalculate magnetic
field of a current distribution in cases where a lot of infotima exists on the
behaviour ofB. The field must have enough symmetry in space so as to enable us
to express the left hand side of (1) in a functional form. Tinepdest application

of Ampere’ s law consists of applying the law to the case ofrdmitely long
straight and thin wire.

Example : Magnetic Field of a long wire

By symmetry of the problem we know that the magnitude of thiel & a point

can depend only on the distance of the point from the wiretheuy the field is
tangential to the circle of radius its direction being given by the right hand rule.

. _ _ |
Thus the integral around the circle is 4\

7{§~cﬁ237{dl23~2wr /_\

Equating this tqu,/, we get

I
5 Mol
2rr

which is consistent with the result
obtained from Biot-Savart’s law.

Let us see if the result above is consistent with a path wrsafot circular, as
shown in the figure. The field at every eleméhbf the path is perpendicular to
7. From geometry, it can be seen that

B -dl = Bdlcos ¢ = Brdf
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Thus

fédj — j{“_ofrdg
2rr
pol

= — @ df = ugl
o Ho

We need to specify the direction
along which the path is traversed.
This is done by Right Hand Rule. If
we curl the fingers of our right hand
along the path of integration, the di-
rection along which the thumb points
is the direction of current flow.

For the case where the path of inte-
gration lies totally outside the path
the current, for every elemedt at P,
there exists another element at P’ for
which B - dl has opposite sign. Thus

when complete line integral is taken,

the contributions from such pairs add

to zero
]{E-leo

Combining these, we get Ampere’s
law in the form of Eqn. (1)

Example 8 : Calculate the field due to a uniform current (IJIistribution mifinite
wire of cross sectional radius.

Solution :

Let the cross section of the wire be circular with a radiis Take the current
direction to be perpendicular to the page and coming out ddyimmetry of the
problem demands that the magnitude of the field at a pointpemgent only on
the distance of the point from the axis of the wire. Consideamperian loop of
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radiusr. As before we have

~ ~1/r

\ | | \ \
0
R 2R 3R 4R 5R I ——

If » > R (asinloop 1), the entire current is enclosed by the loop.dgén, . scq =

I so that
i

- 27
If » < R (loop 2), the current enclosed is proportional to the area, i

B

7'('7“2 ’/‘2
]enclosed - ]W—R2 - ]ﬁ
so that
ol
N 27TR2T
The field distribution with distance is as shown.
Exercise :

A long wire of cross sectional radiug carries a currenf. The current density
varies as the square of the distance from the axis of the \Wired the magnetic
field for r < R and forr > R. ( Hint : First show that the current density
J = 2Ir*/7R* and obtain an expression for current enclosed-fer R. Answer

. B = pol /27y forr > RandB = uolr?/2nR* for r < R.)

Exercise :
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A hollow cylindrical conductor of
infinite length carries uniformly dis-
tributed current | froma < r < b.
Determine magnetic field for alt.

(Answer : Field is zero for < a,
I 2 2
B=l"" "% forg <r <band |
271 b2 — a?

B = uol /27r for r > b.)
Exercise :

A coaxial cable consists of a solid conductor of radiwgith a concentric shell of
inner radiush and outer radius. The space between the solid conductor and the
shell is supported by an insulating material.

T |9

A current/ goes into the inner conductor and is returned by the outdl. She-
sume the cuurent densities to be uniform both in the shelliande inner con-
ductor. Calculate magnetic field everywhere. (AnB. = puolr/27b* inside
the inner conductorB = I /27r between the shell and the inner conductor,
5_ /LL]CQ — 7‘2)

27r 2 — b2
Exercise Determine the magnetic field in a cylindrical hole of radiusside a
cylindrical conductor of radiugs. The cylinders are of infinite length and their
axes are parallel, being separated by a distandde conductor carries a current
I of uniform density. (Hint : The problem is conveniently setvby imagining
currents of equal and opposite densities flowing in the hotkwsing superposi-
tion principle to calculate the field. Answer : The field insidhe hole is constant
B = pold/2m(b* — a?))
Example 9 : Field of a long solenoid
We take the solenoid to be closely wound so that each turn eaoibsidered to
be circular. We can prove that the field due to such a solesadtirely confined
to its interior, i.e. the field outside is zero, To see thissidar a rectangular
amperian loop parallel to the axis of the solenoid.
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Field everywhere on AB is constant andB%a). Likewise the field everywhere
on CD isB(b). By Right hand rule, the field on AB is directed along the loop
while that on CD is oppositely directed. On the sides AD and 8@ magnetic
field direction is perpendicular to the length element andcke5 - dl is zero
everywhere on these two sides. Thus

745 -dl = L(B(a) — B(b)

By Ampere’s law, the value of the integral is zero as no curigenclosed by the
loop. ThusB(a) = B(b). The field outside the solenoid is, therefore, independent
of the distance from the axis of the solenoid. However, frdmggical point of
view, we expect the field to vanish at large distances. Thug = B(b) = 0.

To find the field inside, take an amperian loop EFGH with itgtérparallel to

the axis as before, but with one of the sides inside the saemloile the other is
outside. The only contribution t$ B - dl comes from the side GH. Thus,

%B’ ) JZ = BL = polenciosea = ponLl

where! is the current through each turn ands number of turns per unit length.
Lenaosea = nLI because the number of turns threading the looplisHence,

B = ponl

is independent of the distance from the axis.
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Exercise : Field of a toroid

A toroid is essentially a hollow tube bent in the form of a BrcCurrent carrying
coils are wound over it. Use an amperian loop shown in the digorshow that
the field within the toroid ig:,, N/ L, whereN is the number of turns and the
circumference of the circular path.

Note that as the circumference of the circular path vari¢h e distance of the
amperian loop from the toroid axis, the magnetic field in thveid varies over its
Cross section.

Take the inner radius of the toroid to be 20cm and the outeusaas 21cm. Find
the percentage variation of the field over the cross sectidimectoroid. (Ans.
2.9%)

Example 10 : Field of an infinite current sheet

An infinite conducting sheet carries a current such that tlieeat density is\ per
unit length. Take an amperian loop as shown.
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R

The contribution to the line integral @ from the sides QR and SP are zerams
is perpendicular tall. For PQ and RS the direction & is parallel to the path.
Hence

7{1?-(17:21)3:“0)\6

giving B = pp\/2.

Exercise :
Calculate the force per unit area between two parallel it#iourrent sheets with
current densitied; and ), in the same direction. (AngeA1\2/2)

Ampere’s Law in Differential Form
We may express Ampere’s law in a differential form by use afk8ts theorem,
according to which the line integral of a vector field is eqioahe surface integral

of the curl of the field,
%é~0fl:/curl§-dt5'
S

The surfaceS is any surface whose boundary is the closed path of integration of
the line integral.
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In terms of the current density, we
have,

S /jd_S: encl
S

where 1., is the total current
through the surfac&. Thus, Am-
pere’s law§ B - dl = I, is equiva-
lent to

/curlé-d_gzuo/j-d_g
J which gives

curl B = ,uof
You may recall that in the case of electric field, we had shdven the divergence

of the field to be given bWE = p/epsilong. In the case of magnetic field there
are no free sources (monopoles). As a result the divergente anagnetic field
iS zero

V-B=0

The integral form of above is obtained by application of theetyence theorem

/é-d@:/v-édvzo
S 1%

Thus the flux of the magnetic field through a closed surfaceris.z

Vector Potential

For the electric field case, we had seen that it is possiblefin&la scalar function
¢ called the “potential” whose negative gradient is equahtodlectric fieldvV ¢ =
E. The existence of such a scalar function is a consequende afunservative
nature of the electric force. It also followed that the aliectield is irrotational,
i.e.curl £ = 0.

For the magnetic field, Ampere’s law gives a non-zero curl

curl B = ,uoj

Since the curl of a gradient is always zero, we cannot expﬁ?&a;sa gradient of a
scalar function as it would then violate Ampere’s law.
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However, we may introduce a vector functidri) such that
B=VxA

This would automatically satisfy - .B = 0'since divergence of a curl is zereec A

is known asvector potential Recall that a vector field is uniquely determined by
specifying its divergence and curl. Asis a physical quantity, curl ofl is also
so. However, the divergence of the vector potential has rysipal meaning and
consequently we are at liberty to specify its divergence exsqur wish. This
freedom to choose a vector potential whose cuiBiand whose divergence can
be conveniently chosen is called by mathematicians as @aelvdiagauge If ¢

is a scalar function any transformation of the type

A— A+ VY
gives the same magnetic field as curl of a gradient is iddiizaro. The trans-
formation above is known agauge invariance (we have a similar freedom for
the scalar potentiab of the electric field in the sense that it is determined up to
an additive constant. Our most common choice a$ one for whichy — 0 at

infinite distances.) .
A popular gauge choice fot is one in which

V-A=0

which is known as the “Coulomb gauge”. It can be shown thal suchoice can
always be made.

Exercise :

Show that a possible choice of the vector potential for a@msnagnetic fields
is given byA = (1/2)B x 7. Can you construct any other? (Hint : Takel5 in
z-direction, expressi' in component form and take its curl.)

Biot-Savart’'s Law for Vector Potential .
Biot-Savart’s law for magnetic field due to a current elemé&nt

dB»:/,L()]le’f‘:_/jl()]dﬂlxv(l)
™

4o r? r

may be used to obtain an expression for the vector poteiate the element
does not depend on the position vector of the point at whiemthagnetic field is
calculated, we can write



o di -
the change in sign is becau‘§e§7) =V(1/r) x dl.
Thus the contribution to the vector potential from the elami is

— [ —
dA = 2t g
4mr
The expression is to be integrated over the path of the cutceget the vector
potential for the system
Jo ol [d
47 T

Example 11 : Obtain an expression for the vector potential at a point dua t
long current carrying wire.

Solution :

Take the wire to be along the z-direction, perpendiculahtdlane of the page
with current flowing in a direction out of the page. The magdé of the field at a
point P isuo ! /27r with its direction being along the tangential unit veoiat P,

gl
2rr

The direction of 3 makes an anglér/2) +
¢ with the x direction, whereant = y/x.
Thus

6 = icos<g+«9>+jsin<g+€)
= —isinf+ jcosd

“ L
r r

Hence we have o
_ ol (—yi+ xj)
2 x? + y?

B

We wish to find a vector functiodl whose curl is given by the above. One can
see that the following function fits the requirement

- I ~
A= —% In(z2 + )k (1)
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In the following, we will derive this directly from the expssion for Biot-Savart’s

law.
If pis the distance of P from an element

of lengthdz at = of the wire, we have,

=ty + 2 =p" 42"

Thus z r

- IU()I dz
A="= 2 1 .2\1/2
Ar ) (p* + 2%) P

If the above integral is evaluated fro
z = —o0 10 z = 400, it diverges. How-
ever, we can eliminate the infinity in the
following manner. Let us take the wire
to be of lengthi2 L so that

L

PR p— .
4 ) (p? + 222

The integral is evaluated by substituting= p tan ¢, so thatdz = psec? 0df. We

get

A = MLI/%/ sec 0d0O
A J_,

I.
= K%y In(sec a + tan )
2m

wheretana = L/p.
In terms of L andp, we have

12 2\1/2 2\ 1/2
p p L?

> |~
VR
—_
+
[N}
h"%
[N}
N——

Thus to leading order i,
1. 1 -
A= uik:ln(QL/p) = Mi(ln 2L —Inp)k
2w 2

As expected, fol. — oo, the expression diverges. However, sintetself is
not physical while curl ofA is, the constant term (which diverges in the limit of
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L — o0) is of no consequence antlis given by

I I
A_—@%ﬂ = B (a2 )
4

which is the same as Eqn. (1)
Example 12 : Obtain an expression for the vector potential of a solenoid.
Solution :

We had seen that for a solenoid, the field is parallel to the foti points inside
the solenoid and is zero outside.

B = puonl k insidesolenoid

= (Qoutside

Take a circle of radius perpendicular to the axis of the solenoid. The flux of the
magnetic field is

R

®®®®®®®%§%®®@®®®®®

/é S = ponl . wr® forr < R

%@T@

= ponl.mR? forr > R

SinceB is axial,{is directed tangentially to the circle. Further, from syntme
the magnitude ofl is constant on the circumference of the circle.
Use of Stoke’s theorem gives

/éﬁ;:/mmlﬁ
_ 7&4&

= |A|2nr
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Thus

2
i ,uofgfm‘e ,uonfref <R
mr
ITR? . IR? .
_ pod Ty pond g e g
2r 2r

whered is the unit vector along the tangential direction.

Exercise : Obtain an expression for the vector potential inside a dyloal wire
of radiusR carrying a currenf . (Ans. —ugIr? /AT R?)

The existence of a vector potential whose curl gives the mggfield directly
gives
div B=0

as the divergence of a curl is zero. The vector identity
VxB=VxVxA=V(V-A) -VA4

can be used to express Ampere’s law in terms of vector patietsing a Coulomb
gauge in whichv - A =0,the Ampere’s laww x B = —qu is equivalent to

VQA’ = —,uoj

which is actually a set of three equations for the comporm‘nﬁs viz.,

VQAx - _,UO']:c
VA, = —uol,
VQA,Z - _:uO(]z

which are Poisson’s equations.
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