
Magnetostatics
Electric charges are source of electric fields. An electric field exerts force on an
electric charge, whether the charge happens to be moving or at rest.
One could similarly think of a magnetic charge as being the source of a magnetic
field. However, isolated magnetic charge ( or magnetic monopoles) have never
been found to exist. Magnetic poles always occur in pairs ( dipoles) – a north
pole and a south pole. Thus, the region around a bar magnet is amagnetic field.
What characterizes a magnetic field is the qualitative nature of the force that it
exerts on anelectric charge. The field does not exert any force on a static charge.
However, if the charge happens to be moving (excepting in a direction parallel to
the direction of the field) it experiences a force in the magnetic field.
It is not necessary to invoke the presence of magnetic poles to discuss the source
of magnetic field. Experiments by Oersted showed that a magnetic needle gets
deflected in the region around a current carrying conductor.The direction of de-
flection is shown in the figure below.

Current into the page Current out of the page

Thus a current carrying conductor is the source of a magneticfield. In fact, a
magnetic dipole can be considered as a closed current loop.

Lorentz Force :
We know that an electric field~E exerts a forceq ~E on a chargeq. In the presence
of a magnetic field~B, a chargeq experiences an additional force

~Fm = q~v × ~B

where~v is the velocity of the charge. Note that
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• There is no force on a charge at rest.

• A force is exerted on the charge only if there is a component ofthe magnetic
field perpendicular to the direction of the velocity, i.e.the component of the
magnetic field parallel to~v does not contribute to~Fm.

• ~v · ~Fm = 0, which shows that the magnetic force does not do any work.

In the case where both~E and ~B are present, the force on the chargeq is given by

~F = q( ~E + ~v × ~B)

This is calledLorentz force after H.E. Lorentz who postulated the relationship.
It may be noted that the force expression is valid even when~E and ~B are time
dependent.
Unit of Magnetic Field
From the Lorentz equation, it may be seen that the unit of magnetic field is
Newton-second/coulomb-meter, which is known as a Tesla (T). (The unit is oc-
casionally written as Weber/m2 as the unit of magnetic flux is known as Weber).
However, Tesla is a very large unit and it is common to measure~B in terms of a
smaller unit called Gauss,

1T = 104 G

It may be noted that~B is also referred to as magnetic field of induction or simply
as the induction field. However, we will use the term “magnetic field”.
Motion of a Charged Particle in a Uniform Magnetic Field
Let the direction of the magnetic field be taken to be z- direction,

~B = Bk̂

we can write the force on the particle to be

~Fm = m
d~v

dt
= q~v × ~B

The problem can be looked at qualitatively as follows. We canresolve the motion
of the charged particle into two components, one parallel tothe magnetic field and
the other perpendicular to it. Since the motion parallel to the magnetic field is not
affected, the velocity component in the z-direction remains constant.

vz(t) = vz(t = 0) = uz
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where~u is the initial velocity of the particle. Let us denote the velocity component
perpendicular to the direction of the magnetic field byv⊥. Since the force (and
hence the acceleration) is perpendicular to the direction of velocity, the motion in
a plane perpendicular to~B is a circle. The centripetal force necessary to sustain
the circular motion is provided by the Lorentz force

mv2

⊥

R
=| q | v⊥B

where the radius of the circleR is called the Larmor radius, and is given by

R =
mv⊥
| q | B

The time taken by the particle to
complete one revolution is

T =
2πR

v⊥

The cyclotron frequencyωc is given
by

ωc =
2π

T
=

| q | B

m

F V

B

Magnetic field into the page.B

Figure shows directions of force and velocity
for a positive charge.

Motion in a Magnetic Field – Quantitative
Let the initial velocity of the particle be~u. we may take the direction of the
component of~u perpendicular to~B as thex− direction, so that

~u = (ux, 0, uz)

Let the velocity at timet be denoted by~v

~v = vxı̂+ vy ̂+ vzk̂

we can express the force equation in terms of its cartesian component

m
dvx

dt
= q(vyBz − vzBy) = qvyB

m
dvy

dt
= q(vzBx − vxBz) = −qvxB

m
dvz

dt
= q(vxBy − vyBx) = 0
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where we have usedBx = By = 0 andBz = B.
The last equation tells us that no force acts on the particle in the direction in which
~B acts, so that

vz = constant = uz

The first two equations may be solved by converting them into second order differ-
ential equatons. This is done by differentiating one of the equations with respect
to time and substituting the other equation in the resultingsecond order equation.
For instance, the equation forvx is given by

d2vx

dt2
=
qB

m

dvy

dt
= −

q2B2

m2
vx

The equation is familiar in the study of simple harmonic motion. The solutions
are combination of sine and cosine functions.

vx = A sinωct+B cosωct

where

ωc =
qB

m

is called thecyclotron frequencyandA andB are constants. These constants have
to be determined from initial conditions. By our choice of x and y axes, we have

vx(t = 0) = ux

so thatB = ux. Differentiating the above equation forux,

dvx

dt
= Aωc cosωct− Bωc sinωct

≡
qB

m
vy = ωcvy

Sincevy = 0 at t = 0, we haveA = 0. Thus, the velocity components at timet
are given by

vx = ux cosωct

vy = −ux sinωct = ux sin(ωct+
π

2
)

which shows thatvx andvy vary harmonically with time with the same amplitude
but with a phase difference ofπ/2. Equation of the trajectory may be obtained by
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integrating the equations for velocity components

x(t) =
ux

ωc
sinωct+ x0

y(t) =
ux

ωc

cosωct+ y0

z(t) = uzt+ z0

wherex0, y0 andz0 are constants of integration representing the initial position
of the particle. The equation to the projection of the trajectory in the x-y plane is
given by

(x− x0)
2 + (y − y0)

2 =
u2

x

ω2
c

which represents a circle of radiusux/ωc, centered about(xo, y0). As the z- com-
ponent of the velocity is constant, the trajectory is a helix.

Helical motion of a charged particle
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A plot of the motion of a charged particle in a constant magnetic field.

Motion in a crossed electric and magnetic fields
The force on the charged particle in the presence of both electric and magnetic
fields is given by

~F = q( ~E + ~v × ~B)
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Let the electric and magnetic fields be at right angle to each other, so that,

~E · ~B = 0

If the particle is initially at rest no magnetic force acts onthe particle. As the
electric field exerts a force on the particle, it acquires a velocity in the direction of
~E. The magnetic force now acts sidewise on the particle.
For a quantitative analysis of the motion, let~E be taken along the x-direction and
~B along z-direction. As there is no component of the force along the z-direction,
the velocity of the particle remains zero in this direction.The motion, therefore,
takes place in x-y plane.
The equations of motion are

m
dvx

dt
= q( ~E + ~v × ~B)x = qE + qBvy (1)

m
dvy

dt
= q( ~E + ~v × ~B)y = −qBvx (2)

As in the earlier case, we can solve the equations by differentiating one of the
equations and substituting the other,

m
d2vx

dt2
= qB

dvy

dt
= −

q2B2

m
vx

which, as before, has the solution

vx = A sinωct

with ωc = qB/m. Substituting this solution into the equation forvy, we get, using
Eqn. (1)

vy = −
E

B
+

m

qB

dvx

dt

= −
E

B
+

m

qB
Aωc cosωct

Sincevy = 0 at t = 0, the constantA = Eq/mωc = E/B, so that Thus we have

vx =
E

B
sinωct

vy =
E

B
(cosωct− 1)
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The equation to the trajectory is obtained by integrating the above equation and
determining the constant of integration from the initial position (taken to be at the
origin),

x =
E

Bωc
(1 − cosωct)

y =
E

Bωc
(sinωct− ωct)

The equation to the trajectory is

(

x−
E

Bωc

)2

+

(

y −
Et

B

)2

=
E2

B2ω2
c

which represents a circle of radius

R =
E

Bωc

whose centre travels along the negative y direction with a constant speed

v0 =
E

B

The trajectory resembles that of a point on the circumference of a wheel of radius
R, rolling down the y-axis without slipping with a speedv0. The trajectory is
known as a cycloid.
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Cycloidal motion of a charged particle

Exercise : Find the maximum value ofx attained by the particle during the cy-
cloidal motion and determine the speed of the particle at such points. (Ans.
xmax = 2E/Bωc speed2E/B.)

Current Density :
The current in a wire is a measure of the amount of charge flowing through any
point of the wire in unit time. If the charge density in the wire isλ, the current is
given byI = λv wherev is the drift velocity of the charge carriers. The carriers
travel a distancedl = vdt in time dt so that the amount of charge that flows in
timedt through any point of the wire isdQ = Idt = λvdt. The unit of current is
Coulomb per second, known as Ampere.
When we consider motion of charges on a surface or in a volume,the charges
move in all directions and we have to consider average velocities. We need to
introduce the concept of a charge sensity which is then a vector quantiy at a point
in the material. For instance, consider charges flowing two dimension.
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If we consider a ribbon along the
direction of flow in the surface, we
could talk of the amount of charge
flowing past a lengthdl⊥ normal to
the direction of flow at a point. The
surface current density that we talk
of at this point is thecurrent per
unit length oriented perpendicular
to the flow at this point.

dl

Flow Direction

Thus the current density is

K =
dI

dl⊥

The unit obviously is Ampere per meter. Ifσ is the surface charge density andv
is the average velocity, then the amount of charge flowing past the length element
in time dt is clearlydQ = σdl⊥vdt. The current flowing past the length element
is dQ/dt = σdl⊥v so that the current density isK = σv.
The Lorentz force on charges in the surface is

~Fm =

∫

(σda)~v × ~B =

∫

( ~K × ~B)da

.

In three dimensions, the concept is
very similar. One has to consider the
current flowing through a surface el-
ement oriented perpendicular to the
direction of flow.

dS

flow

The volume current density~J is the defined as

~J =
dI

dS⊥

which has a direction perpendicular to the surface element but going in the direc-
tion of flow. The Lorentz force acting on the charges in the volume is then given
by

~Fm =

∫

(ρdτ)~v × ~B =

∫

( ~J × ~B)dτ
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Equation of Continuity :
The current through any closed volume is thus given by

I =

∫

S

JdS⊥ =

∫

S

~J · d~S

whereS is the surface bounding the volume. Using divergence theorem, we may
conver the surface integral to a volume integral over the divergence, so that

I =

∫

∇ · ~Jdτ

We know that∇ · ~J gives theoutwardflux through the surface. The net outward
flux must result in a net decrease of charges within the volume. In other words,
we must have,

∫

∇ · ~Jdτ = −
d

dt

∫

ρdτ = −

∫

∂ρ

∂t
dτ

As the relation is true for arbitrary volume, we have the equation of continuity

∇ · ~J +
∂ρ

∂t
= 0

In magnetostatics, we study effects of what are known assteady current. The
word steady in thius context does not mean stationary because current itself im-
plies that charges are moving in time. Steady implies that the rate of flow is
constant so that∂ρ/∂t = 0. For steady currents, the equation of continuity be-
comes

∇ · ~J = 0

Biot- Savarts’ Law
We have seen that electrostatics was formulated on the basisof empirical law of
Coulomb. The corresponding law for magnetostatics is Biot-Savart’s law. which
provides an expression for the magnetic field due to a currentsegment. The field
~dB at a position~r due to a current segmentI ~dl is experimentally found to be

perpendicular to~dl and~r. The magnitude of the field is

• proportional to the length| dl | and to the currentI and to the sine of the
angle between~r and~dl.

• inversely proportional to the square of the distancer of the point P from the
current element.
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Mathematically,

~dB ∝ I
~dl × r̂

r2

In SI units the constant of propor-
tionality is µ0/4π, whereµ0 is the
permeability of the free space. The
value ofµ0 is

µ0 = 4π × 10−7 N/amp2

The expression for field at a point P
having a position vector~r with re-
spect to the current element is

~dB =
µ0

4π
I
~dl × r̂

r2

r

B

I

θ

dl

For a conducting wire of arbitrary shape, the field is obtained by vectorially adding
the contributions due to such current elements as per superposition principle,

~B(P ) =
µ0

4π
I

∫ ~dl × r̂

r2

where the integration is along the path of the current flow.

Example 1 : Field due to a straight wire carrying current

The direction of the field at P due to a current element~dl is along~dl×~r, which is
a vector normal to the page (figure on the left) and coming out of it.

r
a

l

dl θ

P

O
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We have,
~dl × r̂

r2
=

| dl sin θ |

r2
k̂

where the plane of the figure is taken as the x-y plane and the direction of outward
normal is parallel to z-axis. Ifa be the distance of the oint P from the wire, we
have

r = a/ sin θ

l = a cot θ

dl = −(a/ sin2 θ)dθ

Thus

~dl × r̂

r2
=

sin θ

a
dθk̂

The direction of the magnetic field at a distancea from the wire is tangential to a
circle of radiusa,as shown.

Ι

a

B

Since the magnetic field due to all current elements at P are parallel to the z-
direction, the field at P due to a wire, the ends of which make anglesφ1 andφ2 at
P is given by a straightforward integration
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~B =
µ0I

4πa

∫ θ2

θ1

sin θdθk̂

=
µ0I

4πa
[− cos θ]θ2

θ1
k̂

=
µ0I

4πa
[− cos θ1 − cos θ2] k̂

=
µ0I

4πa
[sin φ1 + sinφ2] k̂

P

O

θ

φ

θ

φ1

a

2

21

Note that both the anglesφ1 andφ2 are acute angles.
If we consider an infinite wire (also called long straight wire), we haveφ1 = φ2 =
π/2, so that the field due to such a wire is

~B =
µ0I

2πa
k̂

where the direction of the field is given by the Right hand rule.

Exercise :
A conductor in the shape of an n-sided polygon of sidea carries currentI. Calcu-
late the magnitude of the magnetic field at the centre of the polygon. [ Ans.
(µ0In/πa) sin(π/n).]

Example 2 : Field due to a circular coil on its axis
Consider the current loop to be in the x-y plane, which is taken perpendicular to
the plane of the paper in which the axis to the loop (z-axis) lies. Since all length
elements on the circumference of the ring are perpendicularto ~r, the magnitude
of the field at a point P is given by

dB =
µ0I

4π

dl

r2
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The direction of the field due to ev-
ery element is in the plane of the pa-
per and perpendicular to~r, as shown.
Corresponding to every element~dl
on the circumference of the circle,
there is a diametrically opposite el-
ement which gives a magnetic field
~dB in a direction such that the com-

ponent of ~dB perpendicular to the
axis cancel out in pairs.

dl

r dB

θI
z

a

The resultant field is parallel to the axis, its direction being along the positive
z-axis for the current direction shown in the figure. The net field is

~B =
µ0I

4π

∫

dl

r2
cos θ

=
µ0I

4π

cos θ

r2

∫

dl

=
µ0I cos θ

4πr2
2πa =

µ0Ia cos θ

2r2

In terms of the distancez of the point P and the radiusa, we have

B =
µ0I

2

a2

(a2 + z2)3/2

The direction of the magnetic field is determined by the following Right Hand
Rule.

I

B

If the palm of the right hand is curled
in the direction of the current, the
direction in which the thumb points
gives the direction of the magnetic
field at the centre of the loop. The
field is, therefore, outward in the fig-
ure shown.

Note that forz ≫ a, i.e. the field due to circular loop at large distances is given
by

B =
µ0Ia

2

2z3
=

µ0µ

2πz3

whereµ = Iπa2 is the magnetic moment of the loop. The formula is very similar
to the field of an electric dipole. Thus a current loop behaveslike a magnetic
dipole.
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Example 3 :
A thin plastic disk of radiusR has a uniform surface charge densityσ. The disk is
rotating about its own axis with an angular velocityω. Find the field at a distance
z along the axis from the centre of the disk.

z−axis

ω

σ

R
r

dr

z
P

Solution :
The current on the disk can be calculated by assuming the rotating disk to be
equivalent to a collection of concentric current loops. Consider a ring of radius
r and of widthdr. As the disk is rotating with an angular speedω, the rotating
charge on the ring essentially behaves like a current loop carrying currentσ ·
2πrdr · ω/2π = σωrdr.
The field at a distancez due to this ring is

dB =
µ0(σωrdr)

2

r2

(r2 + z2)3/2

The net field is obtained by integrating the above fromr = 0 to r = R

B =
µ0σω

2

∫ R

0

r3

(r2 + z2)3/2
dr

=
µ0σω

2

∫ R

0

r2 + z2 − z2

(r2 + z2)3/2
rdr

The integral above may easily be evaluated by a substitutionx = r2 + z2. The
result is

B = µ0σω

[

R2 + 2z2

(R2 + z2)3/2
− 2z

]

The field at the centre of the disk (z = 0) is

B(z = 0) = µ0σωR
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Exercise : Find the magnetic moment of the rotating disk of Example 7. [Ans.
πωR4/4]
Example 4 : Field of a solenoid on its axis
Consider a solenoid ofN turns. The solenoid can be considered as stacked up
circular coils. The field on the axis of the solenoid can be found by superposition
of fields due to all circular coils. Consider the field at P due to the circular turns
betweenz andz+ dz from the origin, which is taken at the centre of the solenoid.
The point P is atz = d. If L is the length of the solenoid, the number of turns
within z andz + dz is Ndz/L = ndz, wheren is the number of turns per unit
length.

The magnitude of the field at P due
to these turns is given by

dB =
µ0NIdz

2L

a2

[a2 + (z − d)2]3/2

The field due to each turn is along
k̂; hence the fields due to all turns
simply add up. The net field is

~B =
µ0NIa

2

2L

∫ L/2

−L/2

dz

[a2 + (z − d)2]3/2
k̂ z=0z=−L z=Lz

dz

P

θ
d

α
β

The integral above is easily evaluated by substituting

z − d = a cot θ

dz = −acosec2θdθ

The limits of integration onθ areα andβ as shown in the figure. With the above
substitution

~B = −
µ0nI

2

∫ β

α

sin θdθ =
µ0nI

2
(cosα− cosβ)k̂

For a long solenoid, the field on the axis at points far removedfrom the ends of
the solenoid may be obtained by substitutingα = 0◦ andβ = 180◦, so that,

~B = µ0nIk̂

The field is very nearly constant. For points on the axis far removed from the ends
but outside the solenoid,α ≈ β so that the field is nearly zero.
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Example 5 :

Determine the field at the point lo-
cated at the centre P of the semi-
circular section of the hairpin bend
shown in the figure.

a

I

Solution :
The field at P may be determined by superposition of fields due to the two straight
line sections and the semicircular arc. The contribution due to all three sections
add up as the field due to each is into the plane of the paper.
The field due to each straight line section is obtained by putting φ1 = 90◦ and
φ2 = 0◦ in the expression obtained in Example 5 above. The field due toeach
wire isµ0I/4πa.
For the semi-circular arc, each length element on the circumference is perpendic-
ular to~r, the vector from the length element to the point P. Thus

Barc =
µ0I

4π

∫ ~dl × r̂

r2

=
µ0I

4πa2

∫

dl =
µ0I

4πa2
· πa =

µ0I

4a

The net field due to the current in the hairpin bend at P is

B =
µ0I

2πa
+
µ0I

4a

Example 6 : Force between two long and parallel wires.
Force due to the first wire at the position of the second wire isgiven by

~B = −
µ0I1
2πd

k̂

wherek̂ is a unit vecor out of the page.
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The force experienced by the second
wire in this field is

~F =

∫

(~I2 × ~B)dl

= −
µ0I1I2
2πd

(̂× k̂)

∫

dl

= −
µ0I1I2
2πd

ı̂

∫

dl

I
1 I2

F

B

d

x

y

Thus the force between the wires carrying current in the samedirection is attrac-
tive and isµ0I1I2/2πd per unit length.

Exercise :
Determine the magnetic field at the point P for the two geometries shown in the

figures below. [Ans . (a)µ0I/4R (b)
µ0I(R1 − R2)θ

4πR1R2

]

1

2

I

I

θ

P

R
R

I

(b)

(a)

P

R

18



Example 7 :

Find the field at the centre of a con-
ductor shaped as shown in the figure.
The curved sections are quadrants of
circles of radiia andb and the con-
ductor carries a currentI.

A

B

D C
P

dl

r

φ

Solution :
For straight segments AB and CDd~l × ~r = 0 and there is no contribution to the
magnetic field. For the arcs BC and DA use cylindrical coordinates. For instance,
for the arc of radiusb, we haved~l = −bdlφφ̂, the minus sign is because the current
is in the clockwise direction, and~r = −bρ̂ so that

d~l × ~r = b2dφφ̂× ρ̂ = −b2dφk̂

Similarly, for the smaller arc, since the current is counterclockwise,

d~l × ~r = a2dφk̂

wherek̂ is in the z-direction, i.e. perpendicular to the plane of thearcs. Using
Biot-Savart’s law, we get

~B =
µ0I

4π

∫ π/2

0

dφ

(

1

a
−

1

b

)

=
µ0I

8
k̂

(

1

a
−

1

b

)

Ampere’s Law
Biot-Savart’s law for magnetic field due to a current elementis difficult to visu-
alize physically as such elements cannot be isolated from the circuit which they
are part of. Andre Ampere formulated a law based on Oersted’sas well as his
own experimental studies. Ampere’s law states that “the line integral of magnetic
field around any closed path equalsµ0 times the current which threads the surface
bounded by such closed path.. Mathematically,

∮

~B · ~dl = µ0Ienclosed (1)
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In spite of its apparent simplicity, Ampere’s law can be usedto calculate magnetic
field of a current distribution in cases where a lot of information exists on the
behaviour of~B. The field must have enough symmetry in space so as to enable us
to express the left hand side of (1) in a functional form. The simplest application
of Ampere’ s law consists of applying the law to the case of an infinitely long
straight and thin wire.
Example : Magnetic Field of a long wire
By symmetry of the problem we know that the magnitude of the field at a point
can depend only on the distance of the point from the wire. Further, the field is
tangential to the circle of radiusr, its direction being given by the right hand rule.

Thus the integral around the circle is
∮

~B · ~dl = B

∮

dl = B · 2πr

Equating this toµ0I, we get

B =
µ0I

2πr

which is consistent with the result
obtained from Biot-Savart’s law.

I

B

r

Let us see if the result above is consistent with a path which is not circular, as
shown in the figure. The field at every element~dl of the path is perpendicular to
~r. From geometry, it can be seen that

~B · ~dl = Bdl cosφ = Brdθ
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Thus
∮

~B · ~dl =

∮

µ0I

2πr
rdθ

=
µ0I

2π

∮

dθ = µ0I

We need to specify the direction
along which the path is traversed.
This is done by Right Hand Rule. If
we curl the fingers of our right hand
along the path of integration, the di-
rection along which the thumb points
is the direction of current flow.

I

B

dθ

r

θrd

dφ d l

For the case where the path of inte-
gration lies totally outside the path of
the current, for every element~dl at P,
there exists another element at P’ for
which ~B · ~dl has opposite sign. Thus
when complete line integral is taken,
the contributions from such pairs add
to zero

∮

~B · ~dl = 0

Combining these, we get Ampere’s
law in the form of Eqn. (1)

B

r

θrd

dφ

θd

d l

I

d l

B

P

P’

Example 8 : Calculate the field due to a uniform current distribution in an infinite
wire of cross sectional radiusR.
Solution :
Let the cross section of the wire be circular with a radiusR. Take the current
direction to be perpendicular to the page and coming out of it. Symmetry of the
problem demands that the magnitude of the field at a point is dependent only on
the distance of the point from the axis of the wire. Consider an amperian loop of

21



radiusr. As before we have
∮

~B · ~dl = 2πrB

R

2r

r

1

0
R 2R 3R 4R 5R

1

0.5

B
(r

) 
−

−
−

>
 

~ 1/r~ r

r −−>

If r > R (as in loop 1), the entire current is enclosed by the loop. HenceIenclosed =
I so that

B =
µ0I

2πr

If r < R (loop 2), the current enclosed is proportional to the area, i.e.

Ienclosed = I
πr2

πR2
= I

r2

R2

so that

B =
µoI

2πR2
r

The field distribution with distance is as shown.
Exercise :
A long wire of cross sectional radiusR carries a currentI. The current density
varies as the square of the distance from the axis of the wire.Find the magnetic
field for r < R and for r > R. ( Hint : First show that the current density
J = 2Ir2/πR4 and obtain an expression for current enclosed forr < R. Answer
: B = µ0I/2πr for r > R andB = µ0Ir

3/2πR4 for r < R.)
Exercise :
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A hollow cylindrical conductor of
infinite length carries uniformly dis-
tributed current I froma < r < b.
Determine magnetic field for allr.
(Answer : Field is zero forr < a,

B =
µ0I

2πr

r2 − a2

b2 − a2
for a < r < b and

B = µ0I/2πr for r > b.)

a

bI

Exercise :
A coaxial cable consists of a solid conductor of radiusa with a concentric shell of
inner radiusb and outer radiusc. The space between the solid conductor and the
shell is supported by an insulating material.

b
c

a

I

A currentI goes into the inner conductor and is returned by the outer shell. As-
sume the cuurent densities to be uniform both in the shell andin the inner con-
ductor. Calculate magnetic field everywhere. (Ans.B = µ0Ir/2πb

2 inside
the inner conductor,B = µ0I/2πr between the shell and the inner conductor,

B =
µ0I

2πr

c2 − r2

c2 − b2
)

Exercise :Determine the magnetic field in a cylindrical hole of radiusa inside a
cylindrical conductor of radiusb. The cylinders are of infinite length and their
axes are parallel, being separated by a distanced. The conductor carries a current
I of uniform density. (Hint : The problem is conveniently solved by imagining
currents of equal and opposite densities flowing in the hole and using superposi-
tion principle to calculate the field. Answer : The field inside the hole is constant
B = µ0Id/2π(b2 − a2))
Example 9 : Field of a long solenoid
We take the solenoid to be closely wound so that each turn can be considered to
be circular. We can prove that the field due to such a solenoid is entirely confined
to its interior, i.e. the field outside is zero, To see this consider a rectangular
amperian loop parallel to the axis of the solenoid.
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z
B

CD

A

E F

GH

ab

Field everywhere on AB is constant and isB(a). Likewise the field everywhere
on CD isB(b). By Right hand rule, the field on AB is directed along the loop
while that on CD is oppositely directed. On the sides AD and BC, the magnetic
field direction is perpendicular to the length element and hence ~B · ~dl is zero
everywhere on these two sides. Thus

∮

~B · ~dl = L(B(a) − B(b)

By Ampere’s law, the value of the integral is zero as no current is enclosed by the
loop. ThusB(a) = B(b). The field outside the solenoid is, therefore, independent
of the distance from the axis of the solenoid. However, from physical point of
view, we expect the field to vanish at large distances. ThusB(a) = B(b) = 0.
To find the field inside, take an amperian loop EFGH with its length parallel to
the axis as before, but with one of the sides inside the solenoid while the other is
outside. The only contribution to

∮

~B · ~dl comes from the side GH. Thus,
∮

~B · ~dl = BL = µ0Ienclosed = µ0nLI

whereI is the current through each turn andn is number of turns per unit length.
Ienclosed = nLI because the number of turns threading the loop isnL. Hence,

B = µ0nI

is independent of the distance from the axis.
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Exercise : Field of a toroid

A toroid is essentially a hollow tube bent in the form of a circle. Current carrying
coils are wound over it. Use an amperian loop shown in the figure to show that
the field within the toroid isµ0NI/L, whereN is the number of turns andL the
circumference of the circular path.

B

Note that as the circumference of the circular path varies with the distance of the
amperian loop from the toroid axis, the magnetic field in the toroid varies over its
cross section.
Take the inner radius of the toroid to be 20cm and the outer radius as 21cm. Find
the percentage variation of the field over the cross section of the toroid. (Ans.
2.9%)
Example 10 : Field of an infinite current sheet

An infinite conducting sheet carries a current such that the current density isλ per
unit length. Take an amperian loop as shown.
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b

a

P

Q

R

S

The contribution to the line integral of~B from the sides QR and SP are zero as~B
is perpendicular to~dl. For PQ and RS the direction of~B is parallel to the path.
Hence

∮

~B · ~dl = 2bB = µ0λb

givingB = µ0λ/2.
Exercise :
Calculate the force per unit area between two parallel infinite current sheets with
current densitiesλ1 andλ2 in the same direction. ( Ans.µ0λ1λ2/2)

Ampere’s Law in Differential Form
We may express Ampere’s law in a differential form by use of Stoke’s theorem,
according to which the line integral of a vector field is equalto the surface integral
of the curl of the field,

∮

~B · ~dl =

∫

S

curl ~B · ~dS

The surfaceS is anysurface whose boundary is the closed path of integration of
the line integral.
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C

S

In terms of the current density~J , we
have,

∫

S

~J · ~dS = Iencl

where Iencl is the total current
through the surfaceS. Thus, Am-
pere’s law

∮

~B · ~dl = Iencl is equiva-
lent to

∫

curl ~B · ~dS = µ0

∫

~J · ~dS

which gives

curl ~B = µ0
~J

You may recall that in the case of electric field, we had shown that the divergence
of the field to be given by∇ ~E = ρ/epsilon0. In the case of magnetic field there
are no free sources (monopoles). As a result the divergence of the magnetic field
is zero

∇ · ~B = 0

The integral form of above is obtained by application of the divergence theorem
∫

S

~B · ~dS =

∫

V

∇ · ~BdV = 0

Thus the flux of the magnetic field through a closed surface is zero.

Vector Potential
For the electric field case, we had seen that it is possible to define a scalar function
φ called the “potential” whose negative gradient is equal to the electric field∇φ =
~E. The existence of such a scalar function is a consequence of the conservative
nature of the electric force. It also followed that the electric field is irrotational,
i.e. curl ~E = 0.
For the magnetic field, Ampere’s law gives a non-zero curl

curl ~B = µ0
~J

Since the curl of a gradient is always zero, we cannot express~B as a gradient of a
scalar function as it would then violate Ampere’s law.
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However, we may introduce a vector function~A(~r) such that

~B = ∇× ~A

This would automatically satisfy∇· ~B = 0 since divergence of a curl is zero.vecA
is known asvector potential. Recall that a vector field is uniquely determined by
specifying its divergence and curl. As~B is a physical quantity, curl of~A is also
so. However, the divergence of the vector potential has no physical meaning and
consequently we are at liberty to specify its divergence as per our wish. This
freedom to choose a vector potential whose curl is~B and whose divergence can
be conveniently chosen is called by mathematicians as a choice of agauge. If ψ
is a scalar function any transformation of the type

~A −→ ~A+ ∇ψ

gives the same magnetic field as curl of a gradient is identically zero. The trans-
formation above is known asgauge invariance. (we have a similar freedom for
the scalar potentialφ of the electric field in the sense that it is determined up to
an additive constant. Our most common choice ofφ is one for whichφ → 0 at
infinite distances.)
A popular gauge choice for~A is one in which

∇ · ~A = 0

which is known as the “Coulomb gauge”. It can be shown that such a choice can
always be made.
Exercise :
Show that a possible choice of the vector potential for a constant magnetic field~B
is given by ~A = (1/2) ~B × ~r. Can you construct any other~A ? (Hint : Take~B in
z-direction, express~A in component form and take its curl.)

Biot-Savart’s Law for Vector Potential
Biot-Savart’s law for magnetic field due to a current element~dl

d ~B =
µ0I

4π

~dl × r̂

r2
= −

µ0I

4π
~dl ×∇(

1

r
)

may be used to obtain an expression for the vector potential.Since the element~dl
does not depend on the position vector of the point at which the magnetic field is
calculated, we can write

d ~B =
µ0I

4π
∇× (

~dl

r
)
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the change in sign is because∇(
~dl

r
) = ∇(1/r) × ~dl.

Thus the contribution to the vector potential from the element ~dl is

d ~A =
µ0I

4πr
~dl

The expression is to be integrated over the path of the current to get the vector
potential for the system

~A =
µ0I

4π

∫ ~dl

r

Example 11 : Obtain an expression for the vector potential at a point due to a
long current carrying wire.
Solution :
Take the wire to be along the z-direction, perpendicular to the plane of the page
with current flowing in a direction out of the page. The magnitude of the field at a
point P isµ0I/2πr with its direction being along the tangential unit vectorθ̂ at P,

~B =
µ0I

2πr
θ̂

The direction of~B makes an angle(π/2) +
θ with the x direction, wheretan θ = y/x.
Thus

θ̂ = ı̂ cos
(π

2
+ θ

)

+ ̂ sin
(π

2
+ θ

)

= −ı̂ sin θ + ̂ cos θ

= −ı̂
y

r
+ ̂

x

r

x

y

θ

θ

r̂

^

P

θ

Hence we have
~B =

µ0I

2π

(−yı̂+ x̂)

x2 + y2

We wish to find a vector function~A whose curl is given by the above. One can
see that the following function fits the requirement

~A = −
µ0I

4π
ln(x2 + y2)k̂ (1)
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In the following, we will derive this directly from the expression for Biot-Savart’s
law.
If ρ is the distance of P from an element
of lengthdz at z of the wire, we have,

r2 = x2 + y2 + z2 = ρ2 + z2

Thus

~A =
µ0I

4π

∫

dz

(ρ2 + z2)1/2

If the above integral is evaluated from
z = −∞ to z = +∞, it diverges. How-
ever, we can eliminate the infinity in the
following manner. Let us take the wire
to be of length2L so that

~A =
µ0I

4π
k̂

∫ L

−L

dz

(ρ2 + z2)1/2

z

dz

r

P
ρ

θ

I

The integral is evaluated by substitutingz = ρ tan θ, so thatdz = ρ sec2 θdθ. We
get

~A =
µ0I

4π
k̂

∫ α

−α

sec θdθ

=
µ0I

2π
k̂ ln(secα + tanα)

wheretanα = L/ρ.
In terms ofL andρ, we have

secα =
(L2 + ρ2)1/2

ρ
=
L

ρ

(

1 +
ρ2

L2

)1/2

≈
L

ρ

(

1 +
ρ2

2L2

)

Thus to leading order inL,

A =
µ0I

2π
k̂ ln(2L/ρ) =

µ0I

2π
(ln 2L− ln ρ)k̂

As expected, forL → ∞, the expression diverges. However, since~A itself is
not physical while curl of~A is, the constant term (which diverges in the limit of
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L→ ∞) is of no consequence and~A is given by

A = −
µ0I

2π
k̂ ln ρ = −

µ0I

4π
ln(x2 + y2)

which is the same as Eqn. (1)

Example 12 : Obtain an expression for the vector potential of a solenoid.
Solution :
We had seen that for a solenoid, the field is parallel to the axis for points inside
the solenoid and is zero outside.

B = µ0nIk̂ insidesolenoid

= 0outside

Take a circle of radiusr perpendicular to the axis of the solenoid. The flux of the
magnetic field is

R
r

r

1 2

z

θ^

θ̂

∫

~B · ~dS = µ0nI.πr
2 forr ≤ R

= µ0nI.πR
2 forr ≥ R

Since~B is axial, ~A is directed tangentially to the circle. Further, from symmetry,
the magnitude of~A is constant on the circumference of the circle.
Use of Stoke’s theorem gives

∫

~B · ~dS =

∫

curl ~A · ~dS

=

∮

~A · ~dl

= | A | 2πr
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Thus

~A =
µ0nIπr

2

2πr
θ̂ =

µ0nIr

2
θ̂ for ≤ R

=
µ0nIπR

2

2πr
θ̂ =

µ0nIR
2

2r
θ̂ for ≥ R

whereθ̂ is the unit vector along the tangential direction.

Exercise : Obtain an expression for the vector potential inside a cylindrical wire
of radiusR carrying a currentI. (Ans.−µ0Ir

2/4πR2)

The existence of a vector potential whose curl gives the magnetic field directly
gives

div B = 0

as the divergence of a curl is zero. The vector identity

∇× ~B = ∇×∇× ~A = ∇(∇ · ~A) −∇2 ~A

can be used to express Ampere’s law in terms of vector potential. Using a Coulomb
gauge in which∇ · ~A = 0, the Ampere’s law∇× ~B = −µ0

~J is equivalent to

∇2 ~A = −µ0
~J

which is actually a set of three equations for the componentsof ~A, viz.,

∇2Ax = −µ0Jx

∇2Ay = −µ0Jy

∇2Az = −µ0Jz

which are Poisson’s equations.
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