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INTRODUCTION 

Here we take a look at the foundations of classical mechanics from somewhat different 
perspective in an attempt to show that the laws of Newton and the law of universal 
gravitation all follow from a single principle. That sounds like a farfetched idea, but as 
John E. Littlewood has noted1: “Erasmus Darwin held that every so often you should 
try a damn-fool experiment. He played the trombone to his tulips. This particular 
result was in fact negative.” Darwin’s rule, notwithstanding its humorous attire, is 
worth to be taken quite seriously. 

KINETIC ENERGY AND GALILEAN PRINCIPLE OF 
RELATIVITY 

One of the fundamental notions of classical mechanics is that of kinetic energy. Every 
high school student knows that kinetic energy of a moving body equals half the 
product of mass and velocity squared: K = mv2/2. This functional relation is a direct 
and simple corollary of the second law of Newton.  

Is it feasible to derive the formula for kinetic energy without appealing to Newton’s 
second law? What is kinetic energy to begin with? Lacking a precise definition, one 
could start with an obvious observation that kinetic energy is associated with the 
capacity of a moving body to inflict some “damage”, or enact some “change” in the 
state of another body at impact solely due to the fact that it is moving as a whole. 
Daily experience suggests that this capacity – live force as Leibniz called it – is a 
monotonically increasing function of both mass and velocity. Ruling out a priori the 
possibility that kinetic energy might vary with other parameters like volume, 
temperature, shape, etc. is perhaps questionable, but functional relation K = F(m,v) 
seems, at least, a reasonable heuristic conjecture. 



Interaction of Two Identical Bodies 

Here we do not engage in a detailed discussion of what inertial mass is; we simply 
take it as an additive measure of material body’s ability to resist changing its state of 
motion. Let us fix the speed of a moving body and try to work out the functional 
relation between material object’s kinetic energy and its mass: K= F(m,v0)=g(m). 
 

              FIGURE 1 
If two identical bodies moving with the same absolute speed from opposite directions 
along a horizontal, flat, and frictionless surface can compress an elastic spring to a 
certain degree before coming to a complete stop, then two such pairs of bodies 
evidently have the capacity of compressing two such springs to the same degree. This 
is a simple symmetry argument. Hence, due to assumed additivity of inertial mass, 

2g(m) = g(2m)  →  gI(m) = gI(2m)  →  g(m) ~ m;  (1.1) 

i. e. kinetic energy of a moving body is proportional to its mass: K = mf(v).  

Galilean principle of relativity, as we show next, imposes certain restrictions on the 
function f(v). Imagine two identical bodies moving with the same speed w along a flat, 
horizontal, and frictionless surface; between the bodies, there is a compressed 
massless elastic spring prevented from decompressing by a thread (Fig. 2).  

        FIGURE 2 
Cutting the thread releases the spring thereby changing kinetic energy of the system:  

∆K = mf(–v+w) + mf(v+w) – 2mf(w).      (1.2) 

Seeing different values of w as velocities of different inertial reference frames, we get 
a restraining condition on f imposed by Galilean principle of relativity: 

f(–v) + f(v) = f(–v+w) + f(v+w) – 2f(w).      (1.3) 

Assuming double differentiability of f and differentiating (1.3) by v then by w, we get: 

 f II(–v+w) = f II(v+w).    (1.4) 

The general solution of this equation, satisfying the condition f(0) = 0, is: 

 f(v) = av2 + bv.            (1.5) 

Thus, using nothing but Galilean principle of relativity and elementary symmetry 
arguments, we have managed to reduce conjectured functional relation K= F(m,v) to 

K = m(av2 + bv).    (1.6) 



Vis Viva Controversy 

Symmetry arguments will prove invaluable in narrowing down the expression (1.6) 
even further. On the one hand, since kinetic energy is associated with velocity, it 
would seem reasonable to argue that it should be defined and treated as a vector 
quantity. On the other hand, there is no reason to believe that a horizontally flying 
object has more capacity to inflict “damage” compared to the same object flying at the 
same speed in the opposite direction, therefore, |m(av2 + bv)| = |m(av2 – bv)|. For this 
equality to hold either a, or b must be necessarily zero, that is either K ~ mv, or K ~ 
mv2.  

     Which one is correct? That was precisely the subject of the famous debate that 
started in the 17th century and became known in the history of science as vis viva 
controversy. Descartes (1633 and 1644), and later Newton, had argued that vis viva is 
the product of mass and velocity. Leibniz objected to this (1686) that experiments with 
falling and rising bodies indicate vis viva to be another quantity: the product of mass 
and velocity squared. Although today it seems hard to understand how a concept like 
kinetic energy could be controversial, the heated exchange drew other illustrious 
scholars in, and the dispute lasted for almost 100 years. It is not difficult, though, to 
demonstrate that conjecture K ~ mv contradicts Galilean principle of relativity. 

                   FIGURE 3 

At the top of Fig. 3 we see two identical bodies on a horizontal and frictionless flat 
surface; one is moving with velocity v and the other is at rest. As soon as the moving 
body hits the elastic spring it starts slowing down, and the resting body starts 
accelerating. At some point – at the point of maximum spring compression to be exact 
– velocities of the bodies get equal and, for a split of a second, they’ll be moving with 
the same speed u = v/2. Indeed, in a reference frame moving from the left to the right 
with velocity v/2, perfect symmetry in the motion of identical bodies becomes 
apparent; therefore, exactly at the moment of maximum spring compression, both 
bodies will come to rest. Switching back to the original frame of reference we get 
u=v/2. Prior hitting the spring, kinetic energy of the moving body was K = mf(v). At 
the point of maximum spring compression, share of this energy, specifically mf(v/2), 
has been retained by the moving body; equal share of the energy has been passed to 
the other body; yet another share went to changing the spring state from uncompressed 
to that of maximum compression. Without resorting to the law of energy conservation 
(note that we haven’t defined the notion of potential energy; indeed, we don’t even 



have to for our purposes!), we cannot tell exactly what portion of kinetic energy has 
been wasted to “damage” the spring. Nevertheless, there can be no doubt that 

mf(v) > 2mf(v/2)    (1.7) 

Inequality (1.7) is obviously impossible with f(v) ~ v; so we have only one option left, 
namely f(v) ~ v2, with the corresponding final expression for the kinetic energy: 

     K = kmv2      (1.8) 

Principal Schema for Experimental Testing 

We have arrived at inescapable inductive logical inference: Galilean relativity implies 
K = kmv2. Is there a simple and convincing way to test this experimentally? It is 
important to note that we haven’t defined any methodology for comparing distinct 
“damages” caused by distinct sources of kinetic energy. But that is not necessary at all 
for experimental verification of the formula for kinetic energy. Indeed, suffice to 
confirm that a body of mass m moving with velocity v has a capacity to inflict the 
same “damage” as the body of mass 2m moving with velocity v/√2. 

 

                FIGURE 4 

If two pairs of identical bodies moving symmetrically along a horizontal flat surface 
with no friction, as shown in Fig.4, do compress two identical elastic springs to the 
same degree, i.e. if DI = D II, then a logical conclusion follows that a body of mass m 
moving with velocity v has the same amount of kinetic energy as the one of mass 2m 
moving with velocity v/√2. That constitutes a conclusive experimental argument in 
favour of the derived above formula for kinetic energy K = kmv2. 

Newton’s Second Law 

As noted in section 1, formula for kinetic energy follows from the second law of 
Newton. Having logically derived the expression for kinetic energy K = kmv2 from 
Galilean principle of relativity alone, we can now turn things around and derive 
Newton’s second law from it. Constant factor k can be fixed arbitrarily without 
affecting the essence of physical theory. In Newtonian mechanics k = 1/2.   



                      FIGURE 5 

Let a body of mass m moving with some speed v along a frictionless, flat and 
horizontal surface be subjected to a force in the direction of movement for a short 
period of time dt. The action of force changes body’s position and velocity as shown 
in Fig.5. For the kinetic energy differential we have 

dK = m(v+dv)2/2 – mv2/2 = mvdv.   (1.9) 
Recalling the definitions of force (F = dK/ds) and velocity (v = ds/dt) Newton’s 
second law follows from (1.9) instantly: 

F = mdv/dt     (1.10) 

CONSERVATION OF MOMENTUM AND GALILEAN 
RELATIVITY  

We are not done with the implications of the Galilean principle of relativity yet. The 
conservation of linear momentum, as we shall prove next, is also a direct corollary of 
this principle.  

Interaction of Two Distinct Bodies 

We apply now Galilean principle of relativity to the interaction of two objects of 
different inertial mass to see where it leads. 

                  FIGURE 6 

Just like in the case of interaction of two identical bodies, releasing the compressed 
spring leads to a change of kinetic energy in the system (Fig.6):  

∆K = km1(w+v1)2 + km2(w+v2)2 – k(m1+m2)w2      (2.1) 

The magnitude of this change is the same in all inertial reference frames, therefore: 

km1v1
2 + km2v2

2 = km1(w+v1)2 + km2(w+v2)2 – k(m1+m2)w2        (2.2) 

Past simple algebra, (2.2) yields the law of conservation of linear momentum: 

m1v1 + m2v2 = 0                   (2.3) 

It shall be noted that equation (2.3) has been derived for solid bodies, i.e. when all 
parts of each interacting body move with the same speed. It is interesting to see what 
happens when one of the bodies is solid and the other is made of N–1 identical and 



separated from each other solid pieces in a solid container. The container, which is 
kind of a black box, has mass equal to the mass of each piece it contains. 

          FIGURE 7 

Another body of mass m, moving originally at speed v, comes to a complete halt after 
hitting our black box, and the container starts jumping like a frog at equal time 
intervals ∆t=(S1+S2+…+SN-1)/v. First it will jump by S1, then by S2, ... , then by SN-1. It 
will take time interval of (N–1)∆t+∆t=N∆t for the container to advance by 
S=(S1+S2+…+SN-1). Therefore the average velocity of the black box, V=S/(N∆t)=v/N, 
does not depend on ∆t. The total impulse of the system before the collision was equal 
to mv. After the collision, the total mass of the black box, mN, multiplied by the 
average velocity of the container, v/N, yields the same impulse mv, i.e. the impulse of 
the black box calculated in this way is also conserved. That average velocity V is, 
obviously, the velocity of the center of mass of the black box. 
    This may appear a bit paradoxical. Indeed, by taking to the limit ∆t → 0, it seems 
that black box advance can be made as smooth as desired. The total kinetic energy of 
the black box then would be (mN)V2/2 = (mv2/2)/N, i.e. it looks like we have lost most 
of the original kinetic energy mv2/2! This “paradox” has a simple explanation: no 
matter how “smooth” the advance of the black box as a whole might appear to the 
naked eye, only small part of it is actually moving at any given point of time. 

Newton’s Third Law 

The law of linear momentum conservation (2.3) has been derived without making any 
specific assumption about the character of the interaction – it could be via a spring, an 
explosion, etc. Neither did we specify the intensity of the interaction.    

                FIGURE 8 

In the case of an interaction taking an infinitesimal period of time dt (Fig. 8), the 
algebraic equation (2.3) becomes a differential one: 

m1dv1 + m2dv2 = 0        (2.4) 

A simple division of this equation by dt leads to Newton’s third law (for every action 
there is an equal and opposite reaction): 

m1dv1/dt = –m2dv2/dt    →      F1 = –F2   (2.5) 



The Law of Universal Gravitation and Relativity of Scale 

The law of universal gravitation asserts that every object in the universe attracts every 
other object with a force which for any two bodies is proportional to the mass of each 
and varies inversely as the square of the distance between them: F = Gm1m2/r

2. 
Newton was not the first to conjecture the law of gravitation, but he was the first to 
prove it with mathematical rigor by showing that Kepler’s laws, derived empirically 
from the experimental observations of Tycho Brahe, follow from inverse square law. 
    As Feynman has pointed out2, Newton made no hypotheses about the machinery 
behind the phenomenon of gravitation; he was satisfied to find what gravitation did 
without getting into the machinery of it. 
    We know that the force of electrical attraction and repulsion between charged 
particles also varies inversely as the square of separation of the particles. Is this 
remarkable similarity between gravitational and electrical forces a mere coincidence? 
Are there some basic principles from which such behaviour of gravitational and 
electrical forces would naturally follow?  

         FIGURE 9 

Since surface area surrounding any gravitational or electrical charge is increasing as 
square of distance, it seems natural to see inverse square law as mathematical 
expression for some kind of influx conservation law (Fig.9). The problem with this is 
that neither classical mechanics nor classical electrodynamics is ready to deal with the 
question of reality of an intermediary physical substance responsible for the machinery 
of the interaction. Here we offer a theoretical argument of entirely different nature – 
the relativity of scale which is not to be confused with Galilean relativity. It does not 
make sense to speak of material body’s motion unless one specifies another body 
relative to which it is moving. On par with this logic, it does not make sense to speak 
of material object’s size, or the distance between two such objects, unless a measuring 
rod is specified. This is a different type of relativity – relativity of scale. Now, 
following Edwin Jaynes, “if we adopt – almost surely true – hypothesis that our 
allegedly ‘elementary’ particles cannot occupy mere mathematical points in space, but 
are extended structures of some kind”3, then, as we show next, the law of universal 
gravitation follows from this principle of relativity of scale, just like the laws of 
Newton follow from Galilean principle of relativity.  
    Let us imagine that distances between all celestial bodies in the solar system as well 
as their sizes and velocities, including the sizes and distances between all their 
constituent parts (‘elementary’ particles) at each and every level of fractal structure of 
matter, have been reduced, or enlarged instantaneously by the factor of k (Fig. 10). 



 FIGURE 10 
Would such scale transformation alter the evolution of the solar system? In other 
words, would the sequence of observable configurations of the solar system change? 
The answer is no – it would be impossible to tell the difference without “looking out 
the window”. And that is precisely because the law of universal gravitation is the way 
it is. Replace the inverse square law with any other law, and scale invariance of 
equations of motion will break down.  
    Restricting ourselves for simplicity of presentation to the gravitational interaction of 
two bodies, the Sun and the Earth with Ms >> me, the equations of Earth’s motion 
around the Sun are as follows: 

med
2xi/dt2 = GmeMsxi/(x1

2 + x2
2 + x3

2)3/2, i = 1, 2, 3    (3.1) 
Since Ms = (4π/3)ρRs

3, the equations (3.1) can be presented in a form that makes 
scaling invariance apparent: 

d2(xi/Rs)/dt2 = (4π/3)ρG(xi/Rs)/[(x1/Rs)
2 + (x2/Rs)

2 + (x3/Rs)
2] 3/2, i = 1, 2, 3 (3.2) 

It is obvious that scaling invariance of equations of motion will hold in the general 
case of N gravitating bodies as well.  
    It is important to note that scale invariance of density ρ is maintained because scale 
transformation is applied at all levels of fractal structure of matter in the universe 
where there is no such thing as elementary particle. The fact that electron has a spin (it 
rotates!) suggests that it is not an ‘elementary’ particle – it has some kind of structure. 
If electron has a structure, it doesn’t seem reasonable to expect that the elements of 
that structure would not have structures in turn, etc. ad infinitum.   
    Now, if we take relativity of scale as universal principle of nature on par with 
relativity of motion, the inverse square law of gravitational interaction follows as its 
logical implication. 

CONCLUSION 

Newtonian mechanics in its entirety is an inductive implication of what we call 
extended principle of relativity – Galilean relativity augmented with relativity of scale. 
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