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XXVIL On the Magnetic Induction of Crystals.
By Professor Jurivs PLUCKER, of Bonn, F.M.R.S., HM.R.I.

Received March 26,—Read April 23, 1857.

INTRODUCTION.

In repeating Professor FARADAY’S experiments, by which he proved that magnetism is a
universal agency of nature, to whose influence all bodies are subject, I observed in the
year 1847 some strange anomalies, which 1 attributed to the peculiar structure of the
bodies examined. Thus I was led to examine crystalline substances. Between the two
poles of a strong electro-magnet I first suspended a plate of tourmaline, then a plate of
calcareous spar ; and I remarked that these plates, both taken from a polarizing apparatus,
were acted upon in an extraordinary way, not dependent on their exterior shape, but
solely on their crystalline structure. Since these, my first observations, I have diligently
investigated the magnetism of crystals,—this difficult subject of experimental and
mathematical inquiry,—guided, as I was, by the conviction that the study of crystals
would advance the theory of magnetism as it did previously the theory of light.

The experimental results relating to crystals of the different systems, which, in common
with Professor BrEer, I have hitherto obtained, are partly published in POGGENDORFF’S
¢ Annalen.” My intention here is not to complete the series of these results. In order
to discover the true law of nature, I thought it more important to select, out of the
great number of examined crystals, a few proper to be subjected to a closer examina-
tion: I chose red ferridcyanide of potassium, sulphate of zinc, and formiate of copper.

I had proposed in the earliest period of these researches an empirical law, intended
to connect all observations concerning extraordinary magnetic action exerted on crystals
not belonging to the tesseral system. This law, modified subsequently according to new
facts observed by Professor FArapAY and myself, does hold with regard to uniaxal
crystals having one principal crystallographic axis. Indeed such a crystal, like tour-
maline and calcareous spar, when freely oscillating between the two poles, is directed
by them exactly in the same way as if the forces resulting from the magnetic action on
each particle of the crystal acted upon a fixed line within the crystal—its magnetic
axis,—this axis being always forced either into the axial or into the equatorial plane.
These conditions will be satisfied by conceiving the least particles of the crystal to be
small magnetic needles, becoming magnetic by induction. Crystals of a more compli-
cated structure, like those above mentioned, could not be brought under the same law;
for these therefore I supposed generally two such magnetic axes. But here I became
convinced that the proposed law does not hold when such crystals are examined in all
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544 PROFESSOR PLUCKER ON THE MAGNETIC INDUCTION OF CRYSTALS.

directions, and not solely along peculiar ones. Hence nearly two years ago I finally
abandoned an hypothesis against which serious doubts had for a long time arisen. For
the hypothesis of one or two axes acted upon by the magnet, I substituted another similar
hypothesis. In the case of uniaxal crystals, I now conceived an ellipsoid of revolution,
consisting of an amorphous paramagnetic or diamagnetic substance, and having within
the crystal its principal axis coincident with the principal crystallographic axis. It is
easy to verify, that both crystal and ellipsoid, the poles of the magnet not being too
near one another, will be directed between them exactly in the same way. In the
generalization, an ellipsoid with three unequal axes, having within the crystal a deter-
mined direction, must be substituted for the ellipsoid of revolution. In this hypothesis
too, we meet with magnetic axes. In the case of uniaxal crystals, the direction I
formerly denoted by “ magnetic axis” may also be defined as the direction within the
crystal round which there is no extraordinary magnetic action. In the general case we
get two such directions, which we shall also call “magnetic axes,” using this name in a
different sense from that in which it was employed before. A crystal suspended along
either of the two magnetic axes is acted upon like an amorphous body.

According to observation, a crystal under favourable circumstances is directed in the
same way as the smallest of its fragments. Hence, according to our new hypothesis,
the direction which each of its particles would take, when freely oscillating under the
influence of a magnet, may be regarded as determined by an auxiliary ellipsoid. A
quite analogous case is that of an amorphous ellipsoid of iron, for instance, with three
unequal axes, acted upon by an infinitely distant pole. Here also, according to Pors-
soN’s theory, we meet with an auxiliary ellipsoid upon which the pointing of the given
one depends. The mode of verifying the existence of such an auxiliary ellipsoid, as
well as the laws immediately resulting from it, is exactly the same in both cases. 'This
double verification had the fullest, I may say, an unexpected success. I first proceed to
the investigation of the case of Poisson’s ellipsoid. Starting from a beautiful theorem
lately published by Professor BEkg, I was enabled to deduce immediately the analytical
expressions, which subsequently I verified in the experimental way. I think this inquiry,
in which too I enjoyed Professor BEER’S valuable cooperation, will contribute to fami-
liarize experimentalists more and more with the admirable theory, too long neglected,
of the French mathematician.

The curious magnetic phenomena I first observed in crystals ten years ago being
thus supported by an analytical theory, and the numerical results derived from this
theory confirmed by new series of experiments, I take the liberty to lay before the
Royal Society an account of my researches. According to the theory of the magnetism
of crystals I now propose, the magnetic induction within a crystal is, like the elasticity
of the luminiferous ether, determined by means of an auxiliary ellipsoid, which in both
cases is similarly placed within the crystal. Inboth cases there are two fixed directions
within it, the two optic axes along which there is no double refraction, and the two
magnetic axes, round which there is no extraordinary magnetic induction. By means of
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the two optic axes you may obtain the direction of any wave of light entering the
crystal, its plane of polarization, and its velocity of propagation. By means of the two
magnetic axes, you may obtain, using analytical expressions of nearly the same form,
the couple of magnetic forces acting upon a crystal, when suspended between the two

poles along any direction whatever, the position of the crystal, and the law of its oscil-
lations*.

L. On the direction which biaxial crystals assume when suspended between the two poles
along different lines, having a determined position with regard to the primitive form
of such crystals.

1. In all the observations I shall describe in this section I made use of a large
electro-magnet, excited by six of GROVE’S elements, whose pointed poles were at a
distance from each other of 16 inch. The crystals, oscillating in the horizontal plane
which passes through both poles, and equally distant from these poles, were attached
to the double cocoon thread of the torsion balance by means of a hoop, without any
other support.

2. Red ferridcyanide of potassium (3KEy-Fe€y®) is paramagnetlc. I observed, in the
year 1847, that any fragment of this salt, freely suspended between the two poles of an

# T think it scarcely necessary here to prove that the theoretical views imputed to me by Professor
TyxpaLL (Philosophical Transactions, vol. exlv. p. 2) are not mine, and never have been mine. I never
ascribed the phenomena, first observed by myself, to a new force acting upon an ideal line, like the optic
axis, quite independent of the paramagnetic condition of the mass of the crystal. Convinced, as I was from
~ the beginning, that there ought to be analogies between the optic and magnetic properties of crystals, I
never sought the reason for it anywhere else but in the influence of the erystalline structure on both the
luminiferous ether and the magnetic induction. Ino more intended to imply areal repulsion or attraction of
the optic axes, than the celebrated French philosopher, when he said a beam of light in positive crystals was
attracted, in negative ones was repelled, intended to announce a mysterious action emanating in fact from
these axes. Such expressions are intended to describe a newly observed fact, but not theoretical views.  So
also the true meaning of the German words, translated thus, “ independent of the paramagnetic or diamag-
netic condition of the mass of the erystal,” is only this, ¢ whether the mass of the erystal (fourmaline and
calcareous spar) be paramagnetic or diamagnetic, the direction of the axis is the same.” If, notwithstanding
these remarks, there should remain any doubt whatever, I can refer to a paper sent to the Haarlem Society,
December 1849, before other philosophers, except Professor FArRADAY, had published anything about the
magnetic induction of crystals. Starting from mechanical principles, I communicated in this paper a
mathematical explanation of what I had observed, for instance, in the case of tourmaline, conceiving this
crystal to consist of an infinite number of infinitely small needles, becoming paramagnetic by induction, and
being all perpendicular to its axis (see PoaeENDORFF'S Annalen, lxxxvi. p. 1). The physical conditions
of the question, as there stated, seem to be the same ay those which Professor Tyxpary has also adopted
in his memoir (p.45). And though I have recently found reason to modify them, yet there is no trace to
be found of the supposition imputed to myself, nor even of *the supposition that the assuming of the axial
position proved a body to be magnetic, while the assuming of the equatorial position proved a body to' be
diamagnetic” (p. 13). When there is an analytical expression, representing the resulting action exerted
on a body, now attracted, now repelled, according to distance, it is in most cases mathematically legitimate
to speak of two “conflicting forces,” by dividing the whole expression into two members, one of which
represents an attractive, the other a repulsive force.

402
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electro-magnet, does not point like an amorphous paramagnetic body. The poles being
not too near one another, the direction the fragment takes does not depend on its
exterior form, but solely on its interior crystalline structure. On account of this strong
extraordinary magnetic action, the salt above mentioned appears to be peculiarly fit for
exhibiting the phenomena and the laws of this action ; the larger the crystals you obtain
of this salt, the more easily they may be cut and worked.

‘We may regard a right prism with a rhombic base as the primitive form of our salt*.
There are three crystallographic axes perpendicular to each other, the axis of the
prism (e), the shorter diagonal of its base (), and the longer one (1).

3. A crystal of ferridcyanide of potassium, sus-
pended between the two poles in such a manner
that its axis « becomes vertical and therefore its
base A horizontal, sets with energy x axially
(fig. 1). This axis = remains similarly directed
even when we reduce the original prism to a plate,
by taking away its obtuse edges. Such a plate
appears to be repelled by the two poles like a dia-
magnetic body, while a plate cut out of the same
prism by grinding down its acute edges will be
directed, the mode of suspension remaining the
same, like a paramagnetic body, as in fact it is.

The same prism, suspended in such a manner that -2
its axis & may oscillate between the two poles in the
horizontal plane, points equatorially, and seems to be
repelled by the poles like a diamagnetic body. We ,_
//

can use in this experiment any natural prism with its
summits, whose longest dimension is five or six times
greater than its thickness; we may use also a small
needle twenty or thirty times as long as it is thick .
In all these cases the oscillating salt finds its position of stable equilibrium by setting
itself equatorially. When we reduce the oscillating prism to a plate, by diminishing
the dimension of its axis, such a plate, the axis « remaining horizontal, will point
axially like an amorphous paramagnetic body.

Eeq.

* The primitive form of the salt is disputed. According to the prevalent opinion, we admitted, Professor
Brer and myself, in a paper published some years ago, the clinorhombic system, not without some hesita-
tion, as this opinion was neither supported by its magnetic nor its optic properties. I afterwards adopted,
in conformity with the new measures recently made by M. Scuasus of Vienna, the rhombic system. But
again, NORREMBERG’S admirable new arrangement of Amicr’s polarizing microscope showing a minute
difference between the two systems of rings round the optic axes, not seen in the original apparatus, the
question is more doubtful than before. :

+ Not knowing therefore the extraordinary magnetic action, one would be inclined to range our crystals
among diamagnetic bodies, as really has been done.
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4. When, always on the supposition of the axis « oscillating horizontally, the shorter
diagonal of the rhombic base is vertical, the longer one points axially; when the longer
one is vertical, the shorter one points axially. Hence, when any fragment of ferrid-
cyanide of potassium is brought between the two poles, rotating round any one of its
three crystallographic axes w, #, A, this axis being vertical, one of the two remaining
axes points axially, and consequently the other equatorially. There are not within the
crystal any three other directions enjoying the same property. On this account the
three crystallographic axes may also, in the case of our salt, be called the three axes of
paramagnetic induction. You may distinguish these three axes according to the strength
of paramagnetic induction, this induction being in the present case greatest along x, mean
along 2, and least along «.

5. When, 1st, we cut out of a crystal a cylinder with Fig. 8.

a circular base, whose axis is «, we may expect, that
such a cylinder horizontally suspended will, when turned
round its horizontal axis, retain in all its positions the
equatorial direction (fig. 3). But the directing power ax
emanating from the poles is not the same in the different
positions of the rotating cylinder; it is greatest when x )
is horizontal and A vertical ; it isleast when A is horizontal oc

and xz vertical. While the cylinder rotates from the Eq.

first to the second position, this power gradually diminishes.

When, 2nd, we cut out of the same crystal a cylinder whose axis coincides with the
shorter diagonal #, such a cylinder, however you may turn it round its axis, supposed
horizontal, will always point axially. The position agrees with the paramagnetic con-
dition of its substance. But, contrary to this condition, it retains invariably the same
position, when, by diminishing its axis, the cylinder is transformed into a circular plate
(fig. 4). Such a plate is repelled by the poles with different energy, this energy being
greatest when «, and least when A oscillates horizontally.

Fig. 4. Fig. 5. Fig. 6.
o
Ax 7
Ax K Ax x
/ ’ ' g
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When, 3rd, we cut out of the crystal a circular cylinder with its axis parallel to A,
such a cylinder, when horizontally suspended between the two poles, points either equa-
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torially (fig. 5) when «, or axially when # is vertical. "When brought, by turning it round
the horizontal axis A, from the first position to the second, its directive power at first
diminishes, till in a certain position it quite wanishes; and finally, when the cylinder
has passed through this intermediate position, reappears, and increases till the cylinder
reaches the second position. The cylinder, when setting its axis equatorially, is directed
contrary to the paramagnetic condition of its substance ; when axially, in conformity with
it. When, as before, we reduce the cylinder to a circular plate, the axis remaining the
same, the change of direction, by turning the plate round its horizontal axis, takes place
in the same way. But then in the first position the cylinder is directed like a common
paramagnetic body, in the second position (fig. 6) like a diamagnetic body.

6. We shall now describe the results obtained by operating with circular cylinders cut
out of crystals of ferridcyanide of potassium, in such a way that their axis lies in one of
the three principal planes, which, according to the two crystallographic axes they con-
tain, we shall denote by the symbols wz, @i, zA. The axis perpendicular to the prineif)al
plane in which the axis of the cylinder lies, may be marked, before experimenting, on its
bases. In all the following experiments we can replace the circular cylinder by a cir-
cular plate having the same axis.

7. I. Let the axis of the cylinder lie in the plane 2, forming with = any angle ¢.

. Whatever may be the dngle ¢, the cylinder, when oscillating round its axis, this
axis being vertical, takes always such a position that the plane containing the axes x and
A becomes axial, the axis « equatorial (fig. 7).

Fig. 7. Fig. 8. Fig. 9.

b. The cylinder, when suspended in such a way that its axis vibrates horizontally, gene-
rally points in an oblique direction, in respect to the axial line. Only in the case where
also the axis ¢ is horizontal and therefore the plane #A vertical, this axis « points equa-
torially, and therefore the axis of the cylinder axially (fig. 8). 'When, starting from this
position, we turn the cylinder round its horizontal axis, the direction of this axis declines
from the line joining the two poles; the angle of declination increases till the angle of
rotation equals 90°, and therefore the principal plane xA becomes horizontal (fig. 9); its
maximum is p.  'When the rotation still continues, the axis of the cylinder returns towards
the axial line, where it arrives again after a rotation of 180°. From 180° to 360° the
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same deviation takes place in the same way on the other side of the axial line. Hence,
during an entire revolution of the cylinder round its horizontal axis, this axis passes
twice through the asial line joining the two poles.

8. II. Let the axis of the circular cylinder lie in the principal plane A, making with
the crystallographic axis « any angle o. ,

a. Whatever may be the angle ¢, the cylinder, when oscillating round its axis, this
axis being vertical, assumes always such a position that the vertical plane containing the
axes ¢ and A becomes equatorial, the axis = axial (fig. 10).

Fig. 10. Fig. 11. Fig. 12.

[~ 8
G-

b. When suspended in such a way that its axis is horizontal, the cylinder sets it gene-
rally neither axially nor equatorially. When it rotates round its horizontal axis, the
angle of deviation from the equatorial line variesin a way similar to that in which in the
former case the angle of deviation from the axial line varied. There are two positions of
the rotating cylinder where its axis is directed equaforially. In this case the plane «h
becomes vertical (fig. 11). The maximum of the angle of deviation from the equatorial
line equals ¢, and in this case the plane @A is horizontal (fig. 12). During an entire
revolution of the circular cylinder round its horizontal axis, this axis passes twice
through the equatorial line.

9. IIL Let the axis of the circular cylinder lie in the principal plane ax, making any
angle = with the crystallographic axis #.

a. When suspended, its axis being vertical and A being horizontal, the cylinder will,
according to the value of the angle 7, set the axis A either axially or equatorially. By
varying the angle # you will find a certain value of it, which we may denote by ,
for which the circular cylinder will not be directed at all, no more than any amorphous
paramagnetic body of the same shape and suspended in the same manner. The angle o,
after some trials, was found to be about 70°. 'When such a circular cylinder (or plate),
unaffected by the magnet, is gently inclined, by turning it round the horizontal axis ,
in one direction and the contrary, the cylinder (or plate) will again take a certain -
direction ; passing through the indifferent state, it will rotate round the vertical line of
suspension through an angle of 90°. When r<w, the axis A points axially ; when 7> a,
equatorially. The directive power of the poles has its two maxima at =0 and =90°,
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From #=0 till 7=w it gradually decreases, and finally altogether disappears; from r=w
till #=90° it increases again.

The angle » may be taken on either side of the axis Fig. 13.

#. Hence there are, within crystallized ferridcyanide
of potassium, two different directions (QQ and QQ,
fig. 13), enjoying each the property that the crystal,
when suspended along it between the two poles of a
magnet, is acted upon like an amorphous paramagnetic
body. It merely points in conformity with its exterior
shape; when symmetric round its axis of suspension,
it is not directed at all. These two directions, lying
in the plane which contains the axis of the primitive
prism () and the shortest diagonal of its base (=), 7. e. ‘.
the axes of greatest and least paramagnetic induction, / !
shall be called the magnetic axes of the crystal. 'The /
angle between them is about 140° it is bisected by |
the crystallographic axis .

6. When the same circular cylinder oscillates be-
tween the two poles, its axis being horizontal, this axis Q . q
points generally in an oblique direction. The cylinder
rotating round it, two positions will be found where the axis points either axially or
equatorially : it depends upon the value of the angle = which of these two cases takes
place. In this position the crystallographic axis 2 lies in the horizontal plane. When the
same axis (1) is vertical, the deviation of the axis of the cylinder from the equatorial or
axial line is a maximum, the angle between this axis and the axial line being r. Between
the two mentioned cases, where the axis of the rotating cylinder, according to the value
of 7, passes either through the axial or equatorial line, there ought to be an intermediate
case, in which the rotating cylinder passes through such a position that the directing
power emanating from the poles becomes uncertain. It takes place if = equals about 20°
(=90—w); then the magnetic axis passes through the vertical line. Hence, when the
angle 7 varies from about —20° to 20°, the axis of the rotating cylinder passes through
the axial line; when = varies from about 20° to 160°, the axis passes through the equa-
torial line. On this passage the directing power emanating from the poles diminishes
when we approach to the intermediate case, where it is zero.

10. In looking over the above-described results obtained by operating on prisms,
cylinders, and plates cut out of crystallized ferridcyanide of potassium in various direc-
tions with regard to the primitive form of this salt, and suspended in different ways, we
may easily remark, that all the observed positions of the crystals between the two poles
are exactly the same as those of an ellipsoid made from uncrystallized ferridcyanide or
any amorphous paramagnetic substance, and suspended along its different diameters. The
three axes of this ellipsoid are to be supposed unequal ; they are coincident, according to
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their length, with the axis of greatest induction (), the axis of mean induction (1), and the
axis of least induction ().

11. Sulphate of Zinc (ZnS) is a diamagnetic body, showing the extraordinary mag-
netic action not nearly so strong as the red ferridcyanide of potassium, but strong enough
for exhibiting with nicety all the phenomena analogous to those described in the case of the
salt before examined. It was especially selected with the intention to examine whether,
in regard to the extraordinary magnetic action also, the diamagnetic induction be
altogether the contrary of the paramagnetic. This was fully confirmed by experiment.

We may, as in the former case, denote the three crystallographic axes by «, #, and 2,
« being the axis of the primitive prism, = the shorter, A the longer diagonal of its base.

12. A natural prism oscillating between the two poles, which we always suppose
distant enough from each other with regard to the dimensions of the prism, will, when
suspended along its axis (), set equatorially the shorter diagonal of its base (#); when
suspended along its shorter diagonal (z), as well as along the longer one (1), it sets equa-
torially its axis (#). These directions remain unchanged when the dimensions of the
crystal along its crystallographic axes are, in the different modes of suspending, such
that the oscillating body, supposed to be an amorphous diamagnetic one, would be
directed in the contrary way. Hence, in the case of our salt, the three crystallographic
axes may be called the axes of diamagnetic induction, e« being the axis of greatest, = of
mean, and A of least induction.

Fig. 14. Tig. 15.
m--_--—— //’ @"’x—
Axo p va -
Ja //’
(’ E({.
Fig. 17

(O~
o K

13. When we cut out of the crystal a circular plate perpendicular to the axis e, this
axis, when oscillating horizontally between the two poles, points equatorially (fig. 14), as
in the case of an amorphous paramagnetic body. The directing power emanating from
the poles is a maximum if #, a minimum if A be vertical.

MDCCCLVIIIL 4p
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A circular cylinder, whose axis coincides with the longer diagonal (1), when oscilla-
ting horizontally between the poles, sets its axis axially (fig. 15), as an amorphous para-
magnetic body of the same shape would do. The directive power is a maximum if #, a
minimum if « be vertical.

A circular plate, as well as a circular cylinder, whose axes coincide with the shorter
diagonal (z), when suspended with their axes horizontal, set these axes, when rotating
round them, either axially or equatorially (figs. 16, 17). There is an intermediate case
where no sensible extraordinary magnetic action is observed.

14. A circular cylinder, which also, by diminishing the length of its axis, may be
reduced to a circular plate, if its axis do not coincide with one of the three crystallogra-
phic axes («), (z), (1), points generally obliquely when oscillating with its axis horizontal.
It passes, when rotating round its horizontal axis, either through the axial or through
the equatorial position. The first case always takes place if its axis lie in the plane #a,
the second if it lie in the plane wx. But if the axis lie in the plane A, according to the
angles between it and the two axes «, A, the rotating cylinder passes either through the
axial or through the equatorial position.

15. The experiments just described establish the existence, within a diamagnetic cry-
stal also, of two directions, having the property, that the crystal, when suspended along
them, is not acted upon by the magnet in an extraordinary way. We may call these
directions, as we did in the former case, #he magnetic axes of the crystal. In order to
determine the position of these axes, we proceeded in the following way.

First, there was cut out of a large crystal Fig. 18.
of sulphate of zine, very easily procurable, A
a circular plate (nearly 0'5 of an inch dia- [~
meter and 02 of an inch thick) perpendi-
cular to the plane «A and inclined 45° to the @ B A
base of the prism. On the upper base of \ L //
the plate was sketched the direction of the
shorter diagonal (z). When suspended
horizontally (its axis being vertical), the c:
sketched diagonal (%) pointed equatorially, -
just as a circular plate parallel to the base of 21 AN
the primitive prism would do when horizon- / - A4 \\ \
tally suspended. Secondly, another similar < B < /
plate was cut out of the crystal, inclined \ 1
50° instead of 45° to the base of the pri-
mitive form. The new plate horizontally A
suspended set the shorter diagonal () axially. Hence, according to these observations,
the angle, with which an indifferent circular plate may be obtained, is between 45°

and 50° It would be difficult to get by this process with certainty closer limits,
including the value of this angle. Therefore, the angle between the two magnetic axes
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is about 95° and is bisected by the axis of the primitive prism; these axes lie in the
plane containing the acute edges of this prism (fig. 18).

16. Let us conceive an ellipsoid of amorphous sulphate of zinc or another diamagnetic
substance, having within the crystal of this salt its three unequal axes, according to
their length, directed along a, z, A. The positions which the crystal assumes in all the
above described modes of suspension, will be imitated by such an ellipsoid when
suspended along its corresponding diameters.

17. Formiate of copper (Cu ﬁo).—We join to the two examined salts belonging to
the same system, one of them being paramagnetic, the other diamagnetic, a third
salt, whose primitive form is an oblique prism. There is a plane of symmetry passing
through the axis of the prism and the longer diagonal of its rhombic base. The
inclination of the axis to the base is 78° 55'; the angles between the lateral faces differ
52" from a right angle (Heusser): the plane of the base is one of perfect cleavage.
This salt, easily crystallizing in large and homogeneous crystals, is paramagnetic, and
shows very distinctly the extraordinary magnetic action. ,

18. At first natural crystals were examined, whose exterior shape had been varied
by cleaving them parallel to the base. A horizontal plate bounded by cleavage planes
set the symmetrical plane, which, being perpendicular to it, was marked on its upper
base, exactly equatorially, even then, when this position did not agree with the position
of a similar plate consisting of an amorphous paramagnetic substance. Our plate,
when suspended vertically, set the cleavage plane mearly equatorially; in this case the
plate would rotate through nearly 90° if it were not crystallized. "When turned round
the horizontal line perpendicular to its bases, it passed through the equatorial position,
its declination from this position remaining always very small.

19. Then, out of a large crystal was cut a circular plate bounded by planes of sym-
metry, three times as broad as thick. On the surface of the plate, when horizontally
suspended and in equilibrium between the two poles, were marked the axial and the
equatorial line. Let us denote these two lines, perpendicular to each other, by @ and ¢,
the line perpendicular to the plate being denoted by . The angle within the sym-
metric plane between the normal to the cleavage plane and @ was found to be 3° taken
from the normal towards the obtuse angles of the symmetric plane. The approximate
measure of this angle was verified afterwards on different crystals. The same plate
oscillating vertically pointed axially when ¢, equatorially when @ was vertical. In the
first case only an amorphous paramagnetic body of the same shape would assume the
same position. But here also the position of the crystal did not change, after having
changed its dimensions in such a way that an amorphous body of the same shape would
rotate through an angle of 90° round the vertical axis.

920. The last series of experiments may be described thus: the crystal

When suspended along ¢ sets axially 4;

When suspended along & sets axially @ ;

‘When suspended along ¢ sets axially a.
402
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Hence there is proved here also the existence of three axes of paramagnetic induction,
enjoying the property, that the crystal, when vertically suspended along any one of
them, sets one of the remaining two axes axially, the other equatorially. In the case
of our salt, the normal to the plane of symmetry is the axis of mean induction ().
The axes of greatest and least induction, () and (¢), both lie in the plane of symmetry,
the first forming an angle of 3° with the normal to the cleavage plane.

We may again conceive an ellipsoid consisting of an amorphous paramagnetic substance,
having three unequal axes coincident, according to their length, with @, 4, ¢. Then, in all
the different modes of suspension, the crystal will be directed like such an ellipsoid.

21. The two magnetic axes are to be Fig. 19.
sought for within the plane of symmetry et
containing the greatest and the least axis of Qg " 7°
induction (@), (¢). Therefore a circular plate \ . /
was prepared, with a diameter of nearly 0-3
of an inch, bounded by planes perpendicular
to the symmetric plane ABCD (fig. 19), and
inclined to the cleavage plane (the base DC of
the primitive oblique prism) 221°. Horizon- o
tally oscillating, this plate set the plane of
symmetry, marked by a line on its upper base,
equatorially, as a plate bounded by cleavage
planes does. After some trials we prepared -

a similar plate, IL., substituting only an angle ® Clociti]-plane. ¢
of 28° for the above angle of 221°. Such a / \
plate, horizontally oscillating, was not sen- ,
sibly directed by the poles. Hence the two magnetic axes, QQ and Q'Q, of formiate
of copper, lie in the symmetric plane, including an angle of about 50°, bisected by the
above determined axis of greatest induction (a).

a

Q ¥

IL On finite ellipsoids influenced by an infinitely distant pole.

22. We have shown that a natural prism of ferridcyanide of potassium, for instance,
oscillating between the two poles of a magnet, is kept by them in a fixed position,
dependent solely upon the direction of its crystallographic axes with regard to the axis
of suspension. It will invariably retain the same position, whatever part we may take
away from it, whatever the shape of the remaining fragment may become. From this
fact we may conclude that, in the case of this salt, the particles of the influenced crystal
do not act sensibly on each other, and hence deduce that the direction of the whole
mass of the crystal is plainly defined by the action upon a single one of its molecular
particles. According to the above-described experiments, we may infer too, that such a
particle is acted upon like a certain amorphous ellipsoid consisting of the substance of
the crystal. Again, the action of a magnetic pole upon a single molecule is throughout
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analogous to the action of an infinitely distant pole on an ellipsoid of finite dimensions.
In both cases the lines of the inductive force are parallel. Thus the solution of the
following question coincides with the solution of the question regarding magnecrystallic
action :—*“To determine the couple of forces acting upon an ellipsoid when influenced
by an infinitely distant pole.”

- 23. Porsson gave a complete analytical solution of this question, expressing by means
of elliptic functions, which may be calculated in every particular case, the intensity
and the direction of the resulting forces, and hence the resulting moment, relating to
any given axis of rotation. But the complicated analytical expressions of his formulae will
scarcely allow of deducing from them the law they express. Professor BEER recently suc-
ceeded in presenting the results of PoissoN’s theory in a most simple and elegant way,

making use of an auxiliary ellipsoid, whose three axes, G), G)-), G), are expressed by

elliptic integrals.

24. Let this ellipsoid be intersected in the two points M and M' by the straight line
passing through its centre O and the infinitely distant pole. Construct the two planes
touching the ellipsoid in M and M/, and perpendiculars from the centre to these planes,
intersecting them in the two points P and P'. Let the distances OM and OM' be
denoted by 7, the perpendiculars OP and OF’ by p, the angle between OP and OM by &.
Finally, determine two points E and E/, lying in OP and OF’, on opposite sides of the

centre O, whose distance from the centre equals r-;—j Now conceive two ellipsoids, both

equal to the given influenced one, and having their axes similarly directed, the first one,
with its centre in E, filled with southern, the second, with its centre in F, filled with
northern magnetic fluid. Then the resulting action exerted by the infinitely distant
pole, supposed to be a northern one, on the given paramagnetically induced ellipsoid
equals a couple of forces, represented by the attraction of the first and the repulsion of
the second ellipsoid, both filled with magnetic fluid *.

* The solution given above of PoissoN’s problem immediately results from Professor BEEr’s com-
munication, which, as it is short, it is but justice to translate here, merely changing, to avoid error, the
notation in some cases.

“Let A, B, C be the semi-axes of an ellipsoid, E, electrically influenced by an electric mass, M, infinitely
distant along v, whose action on the unit of volume, filled with the unit of electricity, is Mu. Let nuw' be
the attraction or repulsion between two infinitely small volumes, w, ', filled with electricity of the density 1,

at a distance equal to unity.

111

“Construct an auxiliary ellipsoid, whose semi-axes o v o e dlrected along the semi-axes A, B, C of

the influenced conductor. Take
sm2& cos2 3

“_05 Azy j‘" sin’ & cos"& sin&,
p

1__cos?v | sin®v
A L O
In like manner determine -1—2 and -1—2 by replacing A by B and A by C. Let » be the radius vector of the
b0 c°

where
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If the induction of the infinitely distant pole, regarded till now to be paramagnetic,
become a diamagnetic one, nothing is changed but the sign of the two forces, the first
ellipsoid, with its centre in E, being now filled with northern, the second one, with its
centre in F, with southern magnetic fluid.

25. Denoting the value of each force by ¢, the resulting moment of rotation is
immediately found to be
_“_27’;;“5, e ¢
The axis of this moment, which we shall denote by OR, round which the influenced ellip-
soid tends to move, is perpendicular to the plane MOP. The two diameters OM and
OR, possessing the property of being axes of the ellipse formed by the intersection of
the ellipsoid with the plane passing through them, are fwo conjugate axes of the surface;
the relation between the two is a reciprocal one. To any diameter, regarded as one of
two such axes, corresponds only one conjugate axis. Therefore the axis round which the
body tends to revolve is continually changed, if the given ellipsoid under the influence of
the infinitely distant pole freely move round its centre. To any one of the three axes of
the auxiliary ellipsoid exceptionally corresponds an infinite number of second conjugate
axes, lying all in the principal plane perpendicular to it. Hence the influenced ellipsoid
will oscillate continually round such an axis if the infinitely distant pole lie in the con-
jugate principal plane. ; '

26. When the influenced ellipsoid is only free to rotate round a vertical line passing
through its centre—we shall always suppose the infinitely distant pole to lie in the

#uxi]iary ellipsoid along v, and construct at its extremity the tangent plane. TLet p be the length of the
perpendicular from the centre on this plane, and y' its direction. et the influenced ellipsoid E move along

' through the infinitely small distance 7—'11-).0', and denote it in the new position by E,. By the two ellipsoids

E and E, two infinitely thin sheets ave determined, whose acute edges lie in the curve of intersection of
E and E. One of these two sheets, placed towards M, is exterior to E and interior to E,; the other,
placed oppositely to M, is interior to E and exterior to E,. Conceive both sheets filled with electricity of

the same density, 5%[" but of a different kind, the electricity of the second sheet being the same as the

electricity of M.

“Such is on the surface of the influenced ellipsoid E the distribution of electricity induced by the
infinitely distant mass M.”—PoeeENDORFE’s Annalen, xciv. p. 192.

It is well known that the mathematical theory of magnetic induction differs from the theory of electrical
induction only by a constant, which PorssoN denotes by %; this constant being equal to unity in the last
case. In order to apply Professor BEER’S construction to magnetic induction, we have only to replace

the above defined auxiliary ellipsoid by another, whose semi-axes %, 'lb’ % are connected with the former

semi-axes 0710, [}l‘o’ 01_0 by the following relations :—

1 1
=B +h
1 1
m=2w(L—k) +h o
1

to

=om(1—k) +h L,
14 0
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horizontal plane, which therefore contains OM—we may projéct OP on the horizontal
plane, and denote the angle between this projection OP' and OM by £. Then the
moment of rotation round the vertical axis is found to be

!

@)
the radius vector » being always directed towards the pole. The horizontal plane is
intersected by the auxiliary ellipsoid in an ellipse passing through M. According to
simple geometrical relations, the angle £ may be defined also to be, in the horizontal
plane, the angle between OM and the perpendicular from the centre O on the straight
line touching the ellipse in M. ‘

27. In the case of equilibrium, where the moment of rotation disappears,

tan #=0

This condition is satisfied if one of the two axes of the ellipse lying in the horizontal dia-

metral plane points towards the infinitely distant pole; if the longer axis does, ;15 is a

. eyeq e . .1
maximum, the equilibrium therefore an unstable one; if the shorter axis, o becomes a

minimum, the equilibrium a stable one. Hitherto the induction was supposed to be
paramagnetic; if it become a diamagnetic one, the unstable equilibrium becomes stable,
and vice versd. If the section in the horizontal plane be a circle, the angle £ always
equals zero, the ellipsoid, therefore, however turned round its vertical diameter, will not
move. Hence, the magnetic pole being always situated in the horizontal plane,

An ellipsoid with three unequal azes, oscillating round any of its diameters, supposed to
be vertical, when influenced either paramagnetically or diamagnetically by an infinitely
distant pole, will be so directed that the auxiliary ellipsoid sets the shorter axis of its hori-
zontal section either axially or equatorially. The two diameters of the auxiliary ellipsoid,
perpendicular to its circular sections, are the two magnetic axes of the influenced ellipsoid.

28. In order to verify these results emanating from PoissoN’s theory in the case of
an ellipsoid with three unequal axes, influenced by an infinitely distant pole, it will be
necessary to develop them in the analytical way. The formule we shall deduce will
find also their immediate application in the case of magnetically induced crystals.

Let us suppose the influenced ellipsoid to rotate round any of its diameters, th1s
diameter being vertical, and the infinitely distant pole lying in the horizontal plane.
Tts position of equilibrium and the law of its oscillations round the vertical diameter
will be determined by the ellipse in which the horizontal plane intersects the auxiliary
ellipsoid. This ellipsoid is represented in the ordinary way by the equation

@0y "= N G 8|

az> B2 > A

where

The greatest axis of the influenced and the least of the auxiliary ellipsoid lie along
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OX (fig. 20), the mean axis of both ellipsoids along OY, the least axis of the first
and the greatest of the second along OZ. We may determine the horizontal plane
X'0Y', passing through the common centre of both ellipsoids, by two angles, « and
¢; o being the angle between the axis OX Fig. 20.

and the line OX' in which the plane XOY w

is intersected by the plane X'OY’, and ¢ z

the angle between the two planes. This
determination admits no ambiguity when
we conceive the plane XOY to pass from
its original position by a double rotation
into the horizontal plane X'OY'; rotating
first round OZ through the angle «, taken
from OX towards OY, till OX coincides
with OX' and OY with a line we shall de- v

note by OY°’; rotating secondly round OX' 3 ™ <
through the angle ¢, taken in the plane “

Z0Y", from OY° towards OZ, till OY" coincides with OY’ and OZ with OZ'. The three
new axes, OX', OY', OZ, are perpendicular to each other, as the primitive ones are.
The equation of the ellipse in the horizontal plane X'OY', referred to the axes of coordi-
nates OX' and OY', is immediately obtained, when in the equation (3.), by means of the
following relations, v

T

=2’ cos a—y' sin « cos @,
Yy =2 sin e} cos « cos @,

z=y sing,
x, y and z are replaced by #' and . It becomes
e+ 202y 4oy”=1, . . . .. . . . ... (4)
by putting, for brevity,
@ cos® o447 sin’® o =p
—(@®—¥b)sinwcoswcos g . =0q (5.)
(@® sin® -+ 82 cos® &) cos® p-4-¢* sin® p=1.

Denoting the two semi-axes OM and OM!' of this ellipse by% and %, and the two angles,

MOX' and M'OX/, between them and the axis OX' by A and (A+% =), we get the well-
known equations—

(@®=0"P=(e—aP+4e® . . . . . . . . ... (6.)
tan2x=_g2_"7...........'...(7.)
29. From these two equations we may first deduce the following one,
(@*=F)==% sir21¢2>\’
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whence, by substitution,
(a* =)=+ (a? —62) o 2}\ 0sP. . . . . . . . . (8)
30. Again, the formula (7.) may be expanded thus:—

sin 2a cos ¢
tanZA_—m, e e e e e e (9)
where
a®sin? o+ b? cos® a— ¢? —c2
k= C— =sin? 06+

Denoting the angle between the two magnetic axes, perpendicular to the circular
sections of the auxiliary ellipsoid (3.), by 2w (fig. 21), we obtain

b“’ —c? 12— 2 232

g p=tan’e, g =si’w, ;le—z—c——cos w, . . . . . (10)
whence
k=sin’e+tan’s. . . . . . . . . . . . . . (11)
Fig. 21. Fig. 22. ; Fig. 28.
v 7 1
Q
Q
w
w
0 - X o 3 X ° o
w
X/
x!
Q x
X Y

31. It will be in some cases more convenient to refer the horizontal intersecting
plane to another principal section of the auxiliary ellipsoid. Hitherto we have sup-

posed—and so we shall do again in the following articles—the shortest axis E, the mean -2—,
and the longest % to coincide with OX, OY, and OZ. Now let le- fall, as before, on OX,

but % on OY, and -2— on OZ, and accordingly let « be taken in the plane containing the
shortest and the longest axis (fig. 22), from the former towards the latter. In this case
b is to be replaced by ¢, and wvice versd ; therefore

k—-singoc—-singw T ¢ )

32. When, th1rdly, falls on OZ 3 on OX, and - on OY, and accordmgly e« is taken

in the plane YOX (fig. 23), from the mean axis Z towards the longest ;, we get

k=sin*e—cos’w. . . . . . . . . . . . . . (13)
MDCCCLVIIL 4E
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33. By means of the formulee (9.) and (11.)—(18.), we can determine the position of
the influenced ellipsoid, if by the angles « and ¢ its horizontal section be fixed, with regard
to any of its three principal planes. The two axes of the elliptic section of the auxiliary
ellipsoid in the same horizontal plane, determined both by a, will point axially and
equatorially. The same two axes may be found also by the most simple geometrical
construction.

34. Let the axis 212 fall on OA, the axis% on OC; let OQ and OQY (fig. 24) be the
two magnetic axes lying in the plane containing OA and OC, therefore AQ=AQ'=w.

Fig. 24.

Let DMD' be the horizontal plane, AD being « and MDC=¢; let P be the pole of this
plane, whence OP the vertical axis of suspension. Let OE be the projection of OA on
the horizontal plane, OR and OR' the projections of the two magnetic axes OQ and OQ'.
Let OK and OK' in the same plane be the traces of the two circular sections of the
auxiliary ellipsoid, and OM and OM' the two semi-axes of the horizontal elliptic section,
pointing axially and equatorially.

The two semidiameters (OK and OK') in which any elliptical section of the ellipsoid

isintersected by its two circular sections, are both equal to the mean semi-axis % The two

semidiameters (OR and OR') of the same elliptical section, perpendicular to OK and
OK/, are likewise equal to one another. Hence we shall find the two axes, OM and
OM/, of this section, here supposed horizontal, by bisecting the angle RR' and its
supplementary angle.
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35. This construction of the two axes OM and OM' is easy to execute on a given
sphere ; we may also without difficulty transform it into analytical expressions.

Considering the three rectangular spherical triangles AED, QRD, and QR'D, the
angle ADE being =—¢, we get

tan DE =—tanwocos ¢,
tan DR = —tan («—w) cos ¢,} (14.)
tan DR'= —tan («-+w) cos ¢,
whence
7\+7r=—;—(DR+DR’)=DM',} (15.)
0=DE—DM, ' )

denoting by 8 the angle between OE, the projection of OA on the horizontal plane, and
OM' pointing within this plane axially or equatorially.

36. The following relations too will afterwards be employed. From the two triangles
QRD and Q'R'D, just considered, we deduce also,

cos(a—w)

cos DR =——~ v sin DR =sin { sin (¢ —a),
cos DR'= —c—oz—gi‘l—g,ﬁ) ) sin DR'=sin { sin (¢+w),

denoting by ) and 4/ the angles PQ and PQ/, between the two magnetic axes (OQ and
0OQ) and the vertical line OP, and by £ and ' the angles DQP and DQ'P. Hence

d

sin 2= —sin (DR+DR)= 1 sin («—a) c0s (s-+0)+Sms cos (a—a) sin (et-a).

But from the triangles DQP and DQ'P we get, remembering that PDQ=4#—¢ and
PD=1a,
sin ¢ sin of=sin  sin +J'=cos ¢,
whence
sing sin{  fsin¢sing __ cosp .
sind/ 7 sind™ 'V sin¢sind!” sinPsind’
therefore, expanding the last equation,
sino sinf=S022C08¢ - (16)

sin 2A

Reverting to the equation (8.), in which here, according to art. (1), 4* is to be replaced

by ¢%, we may write it now thus:—
(@*=0*)=(a*—c*)sinysin-y. . . . . . . . (17)

87. By means of the angle » we have determined the position of the influenced ellip-
soid : this position, reciprocally, being determined by observation in any particular case,
we can find the angle ». 'We may use for this purpose the formule (9.) and (11.)—(13.).
But a simple geometrical consideration will equally lead us to the determination of the
value of w.

The two vertical planes SPM and S'PM/, containing the two axes of the horizontal
section, and the two planes QPR and Q'PR’ bisecting them, constitute what is called a

4E2



562 PROFESSOR PLUCKER ON THE MAGNETIC INDUCTION OF CRYSTALS.

system of four harmonic planes. Such a system is intersected by any plane in four
harmonic lines. OS, OS' and OQ, OQ' are therefore four harmonic lines, whence the
angle 2» between OQ and OQ' being bisected by OA,

tan z tan 4y =tan’w, . Coe (18.)
denoting the angles OS and OS' by 7 and 4. Again, in the triangle PDS, observing that
PDS=%}#—¢, DPS=7x—a, DS=7-+}«, we get

tan A
tan (7+o)=—_— Py
whence R O A4S
cot A
tan(n'-l—ao): C_(;S_¢

The position of the horizontally oscillating plane being determined, within the
influenced ellipsoid, by the two angles « and ¢, and the two directions within this plane
pointing axially and equatorially by A, the last two equations furnish the values of 7 and
7, whence, by means of (18.), we obtain the value of », and consequently the directions
of the two magnetic axes.

38. We have hitherto considered as known the direction of the three axes of the
auxiliary ellipsoid. Such is the case in the question of a given ellipsoid, influenced by
an infinitely distant magnetic pole, where these three axes are coincident with the three
axes of the influenced ellipsoid. But, when treating on the magnetic induction of
crystals, we shall meet with questions where the direction of the axes of the auxiliary
ellipsoid is to be determined by experiment. If a given ellipsoid be suspended along
any diameter, we can find the two axes of the horizontal section of the auxiliary ellip-
soid, these axes pointing, one axially, the other equatorially. The new question there-
fore is a geometrical one, “To determine the three axes of an ellipsoid, knowing the two
axes of each of its sections,” and may be resolved in the following way.

Let the given influenced ellipsoid revolve round any one of its diameters, supposed to
lie in the horizontal plane, and mark in each of its positions the axial as well as the
equatorial line. These two lines, two conjugate axes of the auxiliary ellipsoid, will
describe during one revolution a conic surface of the third order, containing the three
axes of the auxiliary ellipsoid; for these axes will successively pass through the
horizontal plane, and then point either axially or horizontally. Hence two such conic
surfaces will determine the three axes of the auxiliary ellipsoid.

39. Let any two conjugate axes of the auxiliary ellipsoid be represented by

r=gz, r=g'z,
y=ha, y=Nz,
while this ellipsoid is always represented by

Py P =1.

g+ Wi41=0,
a’qq'+0*hh 4+ *=0,

Then
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whence ' b2—c? .
99 = gp_p=tan’e,
(20.)
a*—c® 1
=07 " cos?w

hh =—

The two conjugate axes, when lying in the above-mentioned conic sufface, are contained
in a plane passing also through the horizontal diameter round which the given ellipsoid
revolves. This diameter being represented by

r=mz,
Yy =nz,

(9" =g)n4-(h—H)m~+-(gh' —hg')=0.
Eliminating ¢ and A’ by means of (20.), and putting gandg instead of ¢ and %, we

we get, therefore,

obtain the following equation :

(no—my) a—

-—nz) .
- cos m+(i/~m——-) sin® w4

mz
So=0,. L L. (L)

representing the conic surface of the third order.

40. Reverting to the rotation of the influenced ellipsoid, we immediately obtain the
instantaneous axis of rotation. The given diameter OM passing, when prolonged,
through the infinitely distant pole, and this axis being two conjugate axes of the
auxiliary ellipsoid, each of them is determined by the other by means of (20.).
Denoting the angles between OM and the three axes of coordinates OX, OY, OZ by
(s, v, ¢, and those between the instantaneous axis of rotation and the three same axes of
coordinates by w/, v/, ¢, we have |

cos p cos p/

!
COS ¢ COS
B oK —Cos v cos Y == — b gt
sl w

cos?w

(22.)

41. The absolute moment of rotation found to be
2¢tan £

r?

may easily be expanded: £ being the angle between the diameter OM passing through
M, whose coordinates may be denoted by «, y, 2, and the perpendicular to the plane
touching the auxiliary ellipsoid in this point, we get by well-known formulz,

tan® ¢=[(&*—0*)ay 4 [(¢* — Az P+ [(0*— ¢z ] = (@’ — {2y cos® w272 412 sin® w],

whence

tan £\ 2 . .
< e E) =(a*—¢*)[ cos® w cos® v cos® w-cos® w cos® p4-cos’ v cos® p sin® w ] ;

and by eliminating cos®» by means of

cos® p—cos® y+4cos? p=1,
and by reducing,

(ﬁ—25>2=%(a2—c2)2[s1n2 Qutsin?(sin Ze—sin? 2u)) . . . . . . (23)
When the infinitely distant pole falls successively within each of the three principal
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sections of the auxiliary ellipsoid, the following resulting moments of rotation are ob-

tained :—
¢(a’—0°) sin 2, o(a’—¢*) sin 2u, @(b*—¢?) sin 2.

42. Now let us suppose the given ellipsoid to rotate round its vertical diameter, the
horizontal plane being determined by any two angles « and ¢. Let the elliptical section
of the auxiliary ellipsoid within the horizontal plane (4.) be represented by

%y + bl2y2=1’
its shorter semi-axis—z lying in the axis of abscissee. Let #/ be the length of the semi-

diameter OM of this elliptical section passing, if prolonged, through the infinitely
distant pole, and &' and ' the coordinates of its extremity, M. Then

tan g/ (al2 blz)wlyl,
whence the moment of rotation round the vertical axis
2¢ tan g

=2¢(a”—0"?) y-—2¢(a’2 b’z)smScosS oo (24)

the angle between the radius vector 7 and the shorter axis 07 being 3.

43. The oscillations of the influenced ellipsoid, when infinitely small, may easily be
analytically determined. The ellipsoid, supposed to be paramagnetically induced, is in

stable equilibrium when the shorter semi-axis (i—,) of the elliptical section of the auxi-

liary ellipsoid within the horizontal plane points towards the infinitely distant pole.
When rotated through an infinitely small angle, this angle being the angle  between

' and the axis (1,), the corresponding moment of rotation becomes ,
20(@”=0")S. . . . . . . . . . . . (25)

This expression will remain unchanged when the paramagnetic induction becomes a

diamagnetic one; ¢ becoming, in this case, negative and the longer axis (-;—,) , instead of

the shorter ( ) directed towards the infinitely distant pole.

‘We obtain therefore, in both cases,
A% 2p(a?—b?)
@ MKE D
denoting the mass of the influenced ellipsoid by M, and its moment of inertia with
regard to the vertical axis by MK®. Consequently the ellipsoid, under the influence of
the infinitely distant pole, oscillates like a common pendulum. Denoting the time of
one oscillation by ©, we get, in the ordinary way, by integration,
MK?2
G—Wtb_'ﬁ_)""""' (26.)
44. When we suppose the three semi-axes A, B, C of the influenced ellipsoid to be
successively vertical, the corresponding values of K? become

s(B+0)=K}, {(A+0)=K], A+B)=K;,
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whence, in the general case, o, 3, y° being the angles between the vertical axis of rota-
tion and the three semi-axes A, B, C,

2 2 2,0 2 2 (20 2 2,0
K*=K?cos’a’+ K2 cos’ 3’4+ K2 cos’y".

The time corresponding to one oscillation round A, B, C being denoted by ©,, ©,, ©®
we have

">

M B2+4+C2 )
O =167
M A%+(C?
®3=_L7"2?.¢ﬂ—i—c‘f’ L. o o o e (27)
2 1 2__M__ A+ B2
441—107 ‘P * ag_bg' ]

Remembering the relations (10.), we find, by division,

@2 A2+CQ g h
6’21 =m§ COS w,

w

@2 A?4+C%
ﬁ:m'stﬂgw, Lo [N . . . . . . . . (28.)
@2 A2+B2

& = Brr e fane;

and likewise, according to (17.),

K2 . .
@_I@.m—ﬁsmxl:smgb’, e e e (29)

+J and +J/ being, as before, the angles between the vertical axis of rotation and the two
magnetic axes.
45. Eliminating, finally, » from any two of the three equations (28.), we obtain
A%+B? B24+C? A%?4C? '
ot =g - - - - - - - (30)

46. With regard to the magnetic induction of crystals, the following geometrical con-
siderations will not appear without some interest.

The auxiliary ellipsoid, whose equation in rectangular coordinates is
a*+y4cr=1, . . . . (3.)

may be replaced by another one represented by
2 2 2
StEta=L. . . . .. (3L

The new ellipsoid, whose axes are «, b, ¢, may be called the first auxiliary ellipsoid ; the
ellipsoid hitherto made use of, the second auxiliary one. The two ellipsoids are polar
surfaces with regard to a concentric sphere whose radius equals unity. The two mag-
netic axes hitherto defined to be the two perpendiculars to the circular sections of the
second auxiliary ellipsoid, may be defined also, with regard to the first auxiliary ellipsoid,

to be the axes of the circumscribed circular cylinders. The resulting couple zi;glg
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may also be written thus,
20p,r, sin E=gr; sin 2¢,
7, being the radius vector OM, of the first auxiliary ellipsoid lying along p(=OP), and
Po(=0P,) the perpendicular to the plane touching it in the extremity of this radius
vector and coinciding with #(=OM).
47. Let e (=OE) be equal to r,p, and directed along OP and OM,; let @, %,, 2, be the
coordinates of M,, and «,, (3, ¥, the angles between ¢(=OE) and the three axes of

coordinates; then
1\?2 c | cos“’ﬂ COS' 'y
(g) < yO ) OS a ) 0

This relation shows that the point E falls on the surface of a new ellipsoid, which
may be called the ellipsoid of induction. Its three semi-axes are a?, 8%, ¢. Therefore the
ellipsoid of induction and the concentric sphere, whose radius is equal to unity, are two
polar surfaces, with regard to the first auxiliary ellipsoid, the polar plane of the point
E touching the sphere in a point K, in which the sphere is intersected by OM,.

By means of the ellipsoid of induction, which may be represented by

2 2 2
%+%+§—Q=1,. C e e (32)

we can completely resolve the proposed question, replacing in all the former formule
a’, b, ¢ by «, 3, y. Thus, for instance,

- +y—2
cos? w:i‘—@» cos 2w= LL—Q’
o—ry a—rty

whence the two magnetic axes are known.

48. With reference to the relations between the different ellipsoids and the sphere
above mentioned, we easily obtain various constructions of PoissoN’s problem, among
which I select the following one (fig. 25).

Fig. 25.
N 1"*
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In the general case, where the influenced ellipsoid is free to rotate round its centre,
construct the planes touching the sphere in the points K and K/, in which it is
intersected by the radius vector OM passing, when prolonged, through the infinitely
distant magnetic pole; and let the conjugate poles of these planes, with regard to the
first auxiliary ellipsoid, be E and E'. Then EOE is a diameter of the ellipsoid of induc-
tion; its projection SOS' on any plane perpendicular to OM (containing, for instance,
the centre O) represents the absolute moment of rotation (putting ¢=1), and the
line within the same plane, perpendicular to the projection SOS/, is the instantaneous
axis of rotation. ~

49. In order to verify the results emanating from Porsson’s theory, I appealed to
the known ability of M. FesseL of Cologne, to turn, out of a homogeneous piece of
soft iron, two ellipsoids with unequal axes, the position of the centres and the length
of the diameters of one set of their circular sections having been previously calculated.
The ratio of the squares of the three axes in both ellipsoids was fixed as follows :—

A2: B2 C?=400:160: 100.

According to this ratio, both sets of circular sections were perpendicular to each other,
as were also the diameters perpendicular to both sets of circular sections. The longest
axis, 2A, of the first ellipsoid was 3-16 inches; the second ellipsoid had only half the
dimensions of the first.

50. 1st. The first ellipsoid was attached at the extremities of its longest axis 2A to the
inside of a graduated thin ring of brass, the shortest axis 2C coinciding also with a dia-
meter of the ring. The ring was attached to the torsion-balance. 'We made use of
a great horseshoe-electro-magnet placed vertically, and excited by twelve of Grove’s
elements. The diameter of the flat poles was about 4 inches, the distance between
their centres 10-24. The ellipsoid was brought into such a position that its centre
lay in the vertical plane passing through the centres of the two poles, at a distance of
80-74 inches from the point midway between them, nearly 4-1 inches below the hori-
zontal plane touching both poles. A dipping-needle, having its centre similarly placed
within the same vertical plane, and by means of a counterpoise pointing horizontally
when the current was interrupted, pointed horizontally too when the current was
closed.

When suspended with its longest axis 2A vertical, the ellipsoid set its mean axis 2B
axially; when with its shortest axis 2C vertical, the same mean axis 2B pointed equato-
rially. Therefore, as the vertical axis of suspension passes within the principal plane AC,
i. ¢. within the middle plane of the ring, from the first position to the second, there ought
to be found a position where the mean axis 2B passes from the axial into the equatorial
line. Accordingly we got the two magnetic axes of the ellipsoid, equally distant on
both sides from the longest axis 2A, and two suspensions corresponding to each axis and
correcting each other.

MDCCCLVIIL. 4F
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61. In the four suspensions along 25° 1565°, 205° 335°, the torsion-wire being attached
to the ring in the corresponding division, beginning from one extremity of the longest
axis and going round from 0° to 360° the mean axis 2B pointed axially, the longest
axis 2A being within the equatorial plane. In the four suspensions along 30°, 150°,
210° 330°, the mean axis 2B pointed equatorially, the longest axis 2A being within
the axial plane; but here the directing power appeared not quite so strong as before,
and most weak in the second and fourth of these suspensions. When suspended along
274°, 1523°, 2073°, 3324° the ellipsoid set its mean axis 2B axially. Hence the angle,
denoted before by o, is between 273° and 30°, about 29°. Therefore the angle between
the two sets of circular sections of the auxiliary ellipsoid, 4. e. the angle between the
two magnetic axes, is about 568° while the two circular sections of the induced ellipsoid
of iron are perpendicular to each other.

The same experiment has been repeated exactly in the same way with the smaller ellip-
soid of iron. The resulting magnetic axis had nearly the same position as in the former
case, the angle @ being fully 30° instead of 29°. This angle was not sensibly changed
when the distance from the point midway between the centres of the flat poles of the
electro-magnet was increased from 30-74 to 89-37 inches.

52. 2nd. Then we proceeded to a second series of experiments, in order, first, to verify
the equation (30.), which may be considered as the test of Poisson’s theory; secondly, to
determine by means of the method of oscillations the same angle  which we formerly
obtained by direct observation. We made use of the smaller ellipsoid, attached without
the divided ring by means of very fine copper wires to the silk thread of the torsion-
balance, having its centre always in the same place, 39:37 inches distant from the equa-
torial plane of the electro-magnet. In three different suspensions the axes 2A, 2B, 2C
were successively vertical, the corresponding principal planes, marked by white paint,
oscillating horizontally, always at the same height. It had been ascertained that the
copper wire did not sensibly increase the moment of inertia of the iron ellipsoid, nor
had the torsion of the carefully selected silk thread any sensible influence on the number
of oscillations. The current being interrupted, the longer axis of the horizontal section
of the ellipsoid was, before oscillating, directed by means of the torsion-balance towards
the poles. The observed numbers of oscillations corresponding to different magnetic
powers were in full accordance. Here I shall refer only to the last series of observations,
where the current was excited by twelve elements, the acids not having been used
before, the zinc being newly amalgamated. Immediately after each observation we
repeated the experiment, with this difference, that that extremity of the vertical axis
which had pointed downwards was now directed upwards. Thus we got two numbers
relating to each of the three cases. After having determined the second number of the
first case, the ellipsoid was brought again into the primitive position: thus was obtained
a third number equal to the first.
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TABLE.
Number of oscillations. Number of seconds required.

Axis 2B vertical.

169
8 . . ... {170}Mean 169-33

169
Axis 2C vertical.

159
4 ... {162}Mean1605

Axis 2A vertical.
1161
157

To control the constancy of the current during the observations, in each suspension
the number of seconds corresponding to the first and last half number of oscillations
was separately marked ; but the number of seconds having been found in all cases equal
to half the total number, I thought it not necessary to note it here. Finally, the first
observation was twice repeated; we found 166-5 instead of 1695, indicating a small
increase of the magnetic power. '

The ratio of the three mean numbers of the Table being independent of the intensity
of the current, the next day we determined by observation in a more peculiar way the
ratio of the first and second number, and afterwards the ratio of the first and third.
In both cases we got small differences. Accordingly, the observation of the first case
admitting the greatest accuracy, we retained the first mean number 169-33 ; instead of
the second, 1605, we adopted 15975 ; instead of the third, 169, we adopted 160-2.

The square of the time of one oscillation concluded from the corrected Table is in
the three cases

12 } Mean 159.

@*= 8851,
®=130-19,
@ =17822.
Putting
A’=400, B?=160, C*=100,
we get
A*4+C*=500, A24-B*=5660, B*4C*=260;
therefore
A%+ C .
& =5649,
A2¢B2
o =4-301,
BQ(;;C —=1-459
The sum of the last two numbers, equal to
5760,

472
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differs from the first by only
0-111,

i. e. g% nearly. This error falls within the limits of the errors of observation.
The equation (30.) being thus verified, we obtain, according to (28.),

tan o= -]'—Z-L—é—g,
4301
whence
w=230° 13"

This value of the angle » agrees very well with the value concluded, in a less exact
way, from the first series of observations*.

II1. Theory of the magnetic induction of crystals, and its experimental verification.

93. The results we obtained in the preceding section remain unchanged as long as the
dimensions of the influenced body may be neglected, with regard to the distance of the
pole, <. e. as long as within the influenced body the lines of magnetic force are sensibly
parallel. The formule therefore we deduced from Poissox’s theory, relating to a finite
ellipsoid influenced by an infinitely distant pole, may be immediately applied to the
infinitely small particle of a crystal at a finite distance from the inducing pole. If the
particle be placed between two opposite poles, we may substitute for the two poles a
single one of double intensity.

54. Let us then conceive, as we did before, the crystal to consist of an infinite number
of influenced small ellipsoids, not sensibly acting on each other. Every such ellipsoid
will furnish a moment of rotation represented by

2 tan £dp
72

b

£ and 7 being determined by the auxiliary ellipsoid. The resulting moment of rotation
will be represented by the integral
9 j‘ tan Ed@)

r2

extended to the entire mass of the crystal. If we admit that all particles of a crystal-
ized mass are of the same form and similarly directed, ¢ and r become constant, whence

the resulting moment,
2¢sin &
”

¥ We may regard here the above-described experiments as a sufficient verification of the results ema-
nating from Porsson’s theory, in the case of an ellipsoid of iron influenced by a distant pole. A more
complete verification of this theory lies beyond the limits of this paper. The ellipsoid of iron may be
replaced by a similar one of cobalt or nickel; according to theory, the angle (2w) between the two axes will
be found to be a different one. We may derive from experiment the value of PorssoN’s constant %
(art. 24, note), and compare the value of the magnetic induction with gravitation. Whatever may be the
interest connected with these questions, they must be reserved to another series of experiments; the more
80, as our horseshoe-electro-magnet—whose two poles induce a distant ellipsoid in opposite sense, along
directions which are to be previously determined by observation—is, for such researches, to be replaced by
a system of two cylindric electro-magnets having a common axis.
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The moment therefore is the swme, as if the crystal, whatever may be its exterior form, were
transformed into an amorphous ellipsoid of the same mass. |

95. A finite amorphous ellipsoid, attached to any vertical axis, when influenced by
an infinitely distant pole falling within the horizontal plane, will be directed in the
same way as a similar ellipsoid rotating round its vertical diameter. Having therefore
a series of such ellipsoids attached one to another and rotating round a common axis,
each of them will be forced into the same position of equilibrium as when rotating alone.
Hence a crystal too, oscillating between the two poles, is directed, whatever may be its
shape, like one of its ultimate particles, ¢. e. like the above-mentioned ellipsoid.

56. Therefore, in the case of the magnetic induction of crystals, the same analytical
formulee subsist, which, in the preceding section, we derived in the case of an influenced
amorphous ellipsoid by means of auxiliary ellipsoids. All former formulee concerning
the direction of the crystal remain unchanged. With regard to the formule bearing
upon the law of its oscillations, we shall suppose the oscillating crystal to be always of a
spherical form; then the moment of inertia, corresponding to any vertical axis, is equal
to 2MR?, denoting the mass of the crystal by M and its radius by R. Accordingly, the
formule (26.), (28.), (29.), (30.) are to be replaced by

. MR _ MR%® 1 L (38)

T 5p(d®—8%) " 5p(a*—c?) sinysiny

) . (C) .

@:’=Sln w, ®_:I’l = cos , %: tanw. . . . . . . (34)
O*=0@’sin¢sind. . . . . . . . . . . . . . (35)
1 1 1

"

In all these formule, we suppose known, as we did before, the direction of the three
axes 2a, 2b, 2¢ of the first ellipsoid, <. e. the direction of the axes of greatest, mean, and
least induction. The angle between the two magnetic axes is always denoted by 2a.
The time of one oscillation is denoted by ©, ©,, ®,, and O, in the cases where the
crystal, of a spherical form, successively oscillates round its axes of greatest, mean, and
least induction, and round any diameter determined by the two angles +} and
between it and the two magnetic axes.

57. The first question we here meet with, is to determine for any crystalline substance
the constants, especially », upon which depends the position of the crystal, when
suspended between the poles, and the law of its oscillations.

1st. We may, as shown in the case of ferridcyanide of potassium, sulphate of zinc,
and formiate of copper, find by experiment, within the crystal, the two magnetic axes,
remembering that the crystal, when suspended along one of them, is not acted upon in
an extraordinary way, not at all acted upon when its form is, for instance, that of a
sphere.

2nd. Any one suspension of the crystal along a vertical axis, fixed with regard to the
axes of induction, is sufficient to determine the angle », and hence the position of the
two magnetic axes. We may for this purpose make use of the formula (9.), and any
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one of the formulee (11.)-(13.), or of the formule (18.), (19.). Reciprocally, » being
determined, we may calculate the position of the crystal in any given suspension, by
means of (9.) and (11)~(13.), or of (14.) and (15.).

3rd. Let the spherical crystal be successively suspended along any two diameters,
previously determined within it with regard to its axis of induction, and let us take in
both cases the number of oscillations it performs in a given time, when brought a little
out of its position of stable equilibrium. From the two numbers thus obtained we can
easily calculate the value of  (84.), most easily when the crystal was suspended along
any two of its axes of induction (33.).

58. By determining for any crystal the value of the angle » in the three different
ways, we are enabled to verify the theory we have put forward. Such a verification,
however, is immediately supplied by the equation (36.), which may be expressed thus:—

The sum of the squares of the numbers of oscillations which a sphere turned out of a
crystalline substance performs in a given time, when successively suspended along the great-
est and least axis of induction, equals the square of the number of oscillations performed
when suspended along the mean axis of induction.

59. Among the crystals I was able to provide, the most proper to be used in order to
verify the proposed theory of the magnetic induction of crystals was formiate of cop-
per, which I crystallized myself. After some trials, I succeeded in getting turned, by
M. FEsseL, out of a fine crystal of this salt, a perfectly homogeneous sphere 0-39 of an
inch in diameter. A great circle traced on its varnished surface marked the cleavage
plane of the crystal. [In order to verify, after experiment, the position of this plane,
the sphere was cloven by means of the heat produced in the focus of a burning lens.]
The sphere was supported by a small circular ring of very thin mica, attached by three
thin silk threads to the double cocoon-fibre of the torsion-balance. The distance of the
pointed poles, the extremities of large iron pieces put on the flat poles of the large
electro-magnet, from each other, was about 158 of an inch.

60. The sphere was first placed on the ring, with its cleavage plane horizontal, in
order to determine the symmetrical plane, this plane being in our case vertical and
forced by the power of the magnetic poles into the axial position. After having traced
on the surface of the sphere the symmetrical plane thus obtained, we placed it on
the ring, with this plane horizontal. The two points, marked on the new great circle,
pointing axially and equatorially, indicated the direction of the greatest and least axis of
magnetic induction, the mean axis being perpendicular to the symmetrical plane. The
two principal planes perpendicular to the symmetrical plane were likewise marked on
the surface of the sphere by great circles, one of which, passing through the least and
mean axis, is nearly coincident with the cleavage plane, the angle between the two planes
being nearly 3°.

61. 1st. We tried first to determine directly the position of the two magnetic axes
within the symmetrical plane, by turning the sphere, when influenced by the poles,
around the mean axis, the symmetrical plane remaining always vertical. But here we
observed that the passage from the axial position of the symmetrical plane to the equa-
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torial one takes place gradually, the crystal passing through all intermediate positions
while it rotates through several degrees round the mean axis of rotation. This mode of
determining » admits therefore of no great accuracy.

The inclination of the cleavage plane to the horizontal plane was determined, when
the symmetrical plane pointed 456° bisecting the angle between the axial and the equa-
torial plane. We got for this angle, by inclining the cleavage plane on both sides, on
one side 21°, on the other 26°, whence #=23%° and the angle between the normal
to ‘the cleavage plane and the mean axis 2}°. [Instead of 231°, we got formerly 25°
(art. 21); instead of 21°, by direct measure 3°.]

62. 2nd. Then the number of small oscillations was counted which the same sphere
performed in one second, when successively suspended along its three axes of induction.
In one series of observations six, in another twelve of GROVE’S elements were used. In

both series the crystal was twice suspended along each axis. The following Table fur-
nishes the numbers thus obtained :—

Suspended along Numbers of oscillations,
Six elements.

. 1

The greatest axis . . . . . 224 23 ®,

. 1

The meanaxis . . . . . . 53 53 )
i

. 1
The least axis . . . . . . 49 49 o
17

Twelve elements.

. 1

The greatest axis . . . . . 31 311 ®
. 1

The meanaxis. . . . . . 73 73 o
H

. 1
The least axis . . . . . . 67 67 6

Il
From the first series of observations we get

] —

1 1
]()—?+(—97=2918, ®3A—-2809 ;

w

from the second,
1 1 1

The differences between the two numbers thus obtained in both cases (109 and —163),
are so small, with regard to the limits of error, that the theorem of article 58 can be
considered confirmed by experiment. ‘

In order to eliminate these small differences, let us remember that the ratio of any
two corresponding numbers in the two series of observations is to be the same, this ratio
equaling the ratio of the inducing powers of the magnet. Again, in the two series of
observations, the numbers corresponding to the same mode of suspension are likewise in
the same ratio. These two conditions are fulfilled with regard to the suspensions along
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the greatest and mean axis. We get as near as possible
5_3L 138,

53— 225

We may regard, therefore, the

this number indicating the relative inducing power.
Among all possible vertical axes of

four numbers 22:5, 31, 53, 73 as the most exact.

suspension, the ménémum number of oscillations corresponds to a suspension along the
greatest axis, the maximum number to a suspension along the mean axis. Therefore we
are authorized to prefer 22+5 and 31 to 23 and 81+5. In conformity with that, we may,
according to our theorem, calculate the numbers of oscillations in the third mode of
suspension, which admits the greatest errors of observation. The two resulting numbers

. __22'5_5;3_1
S w=— 53 —73)

w=2568.
63. 3rd. We shall deduce the value of w from the observed position of an influenced

Fig. 26.

are 48:0 and 68:3, instead of 49 and 67. Finally, we obtain (34.),

whence

crystal, suspended along any known direction. The crystals I had obtained exhibiting
in a very pronounced way several faces of the primitive octahedron, we suspended one of
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them with such a face horizontal, and were enabled to observe with accuracy the angle
between the equatorial line and an edge of the primitive octahedron, the line of inter-
section of the horizontal face and the cleavage plane. This angle was found to be 23°.
The same value of the angle was obtained as well by different natural crystals as by a
circular plate turned out of a fine crystal, on whose base, lying in the face above men-
tioned, the direction of the edge was marked by a line, along which, moreover, was
attached a long and very thin filament of glass, indicating more distinctly the pointing
of the crystal.

Let ABDC (fig. 26) be the symmetrical plane containing the two axes of greatest and
least induction OX, OZ; AEBF the cleavage plane perpendicular to the symmetrical plane,
and containing the mean axis OY; and lastly, PQSR the horizontally-suspended face of
the primitive octahedron, intersecting ABDC in OS and AEBY in the edge PQ. The
equatorial and the axial line OT and OV lie in the horizontally-oscillating face PQSR;
the measured angle POT equals 24°. According to M. HEUSSER’S measures, the inclina-
tion of the face PQSR to the cleavage plane is §1° 31/, and from his above-quoted angles
(art. 17) we derive QOB=44°51'.  Hence, considering the rectangular spherical triangle
determined by 0Q, OS, OB, we get ‘

QOS=57° 59, BOS=41° 35%, ¢=56°17,

denoting by ¢ the angle between the face in question and the symmetrical plane. The
angle ZOB within the symmetrical plane being 3° (art. 19), we get

e=X0S=BO0S+493°=134° 3561/,
and in like manner :
A=VOS=POT+90°—QO0S=34° 31".

Starting from these values of the angles ¢, « and A, we obtain, by means of the formul
9.) and (12.), or (18.) and (19.),
®) (12) w=25° 3/ *,

64. After having expounded the general theory of the magnetic induction of crystals,

* Hitherto we have only determined, by various methods, the value of the angle w, and thus obtained a
linear relation between the three axes of the ellipsoid of induction. If, by considerations exceeding the
limits of this paper, we should be enabled to get the ratio itself of these axes, we could hence deduce the form
of the magnetic particles of the examined crystal, supposing that, in fact, these particles are similar ellip-
soids, similarly directed, all induced by the magnetic pole, but not sensibly inducing each other. Mr. W.
TroMmsoN, however, has published a curious theorem, according to which a body of any exterior shape is
influenced by an infinitely distant pole like a certain ellipsoid whose axes are to be determined in each
case. Hence an infinite variety of forms corresponds to a known ellipsoid of induction, Again, each physical
condition of erystals leading to our ellipsoid of magnetic induction has, to the present time, independently
of Po1sson’s hypothetical views on matter, the same claim to be the Iaw of nature. "'We may generally con-
ceive an amorphous substance to consist of equal particles, pointing in all different directions, which by the
act of crystallization become directed in the same way. But I think it probable we shall obtain the same
results by admitting spherical particles, which, according to their different proximity along different direc-
tions within the crystal, will equally lead, by their mutual induction, to three axes of induction ; thus each
such particle may possibly be acted upon in the same way as our ellipsoidal particles.

MDCCOLVIIL 46
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‘we may easily apply it to the case where the auxiliary ellipsoids are ellipsoids of revolu-

tion, and therefore the two magnetic axes coincident along the same line. The crystals
in this case are to be called uniazal. We may distinguish too positive and negative
uniaxal crystals. In positive crystals ¢’=4§? and therefore »=0; in negative crystals
0*=c* and therefore ¥=90°. The induction in both cases may be as well a diamag-
netic as a paramagnetic one.

65. Since the two axes of the horizontal section of the first auxiliary ellipsoid point
axially and equatorially, as they do in the general case, the position of a uniaxal
crystal, when suspended between the two poles along any of its diameters, is imme-
diately obtained. Here the axis of revolution, . ¢. the magnetic axis of the crystal,
when projected on the horizontal plane, is one of these two axes, the other being the
intersecting line of the equatorial plane of the ellipsoid and the horizontal plane. If
the crystal be positive, this intersecting line is coincident with the shorter axis of the
elliptical section within the horizontal plane; if it be negative, with the longer axis.
Hence a paramagnetic crystal, when positive, sets its magnetic axis in the axial,
when negative in the equatorial plane of the electro-magnet. In diamagnetic crystals,
when positive, the magnetic axis is forced into the equatorial, when negative into the
axial plane. In order to give a true description of this fact, you may say, in all cases the
magnetic axis of the crystal is either attracted or repelled by the poles.

This law can easily be verified in a most distinct way by a great number of paramag-
netic and diamagnetic, positive and negative crystals. I think it therefore not necessary
to refer here to new experiments.

66. In most cases the magnetic axis is known, if not, it can easily be found by
suspending the crystal along any two vertical axes. Mark in both suspensions if the
crystal be positive and paramagnetic, or negative and diamagnetic, on its surface the
axial plane, if it be positive and diamagnetic, or negative and paramagnetic, the equato-
rial plane; in both cases the line of intersection within the crystal of the two planes
marked on its surface is the magnetic axis.

67. The law of the small oscillations of the ecrystal, which again, for simplicity, we
suppose of a spherical form, when suspended between the poles along any vertical axis,
is represented by the former equations (33.) and (35.), now simplified thus:

_ MR=® 1
= N 8
@=Osin+), . . . . . . . . . . . . . (38)

denoting by © the time of one oscillation, if the angle between the magnetic axis and
the vertical axis of suspension equal +}, and ©, the time of one oscillation if 4=90°, 4. e.
it the magnetic axis oscillate horizontally.

68. Remembering a former observation, according to which sulphate of iron, although
belonging to the clinorhombic system, ranges among uniaxal crystals, having its mag-
netic axis within the symmetrical plane, I selected this salt to verify the last formula. I
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provided a small but most homogeneous and transparent sphere, on whose varnished
surface the symmetrical plane was marked by a great circle.

We succeeded first in establishing the former observation. The sphere of sulphate of
iron was suspended between the two poles, as formerly the sphere of formiate of copper
was, with this difference only, that, on account of the stronger paramagnetic induction,
we made use of only two of GRoVE’'s elements instead of six. The sphere was first
placed on the ring with the symmetrical plane horizontal, and the direction within it
pointing axially, marked by a point on the corresponding great circle. The sphere
being then placed on the ring, with the symmetrical plane vertical and the marked
point situated in the vertical axis of suspension, did not move under the influence
of the magnetic poles. Hence sulphate of iron is a uniaxal positive and paramagnetic
crystal.

The sphere was then put on the ring successively with its symmetrical plane hori-
zontal, and inclined 45° alternately on one side and the other.

The symmetrical plane. Number of seconds required
for twenty oscillations.

Inclined 445° . . . . . . 60
Horizontal . . . . . . . . . . . . 44
Inclined —456° . . . . . . 64
Horizontal . . . . . . . . . . . . 45
Inclined 445°. . . . . . 61
Horizontal . . . . . . . . . . . . 46
Inclined —45° . . . . . . 651
Horizontal . . . . . . . . . . . . 45
Inclined +45° . . . . . . 631

Mean numbers . . . 62:8=0, 45=0,

Hence
g:»: 0715  sin «p=sin 45°=0-707;

therefore, in this case also, the theory is fully confirmed by experiment.

69. Being desirous of examining in like manner a uniaxal and diamagnetic crystal,
I selected a beautiful specimen of crystallized bismuth, showing the cleavage in the
most perfect way. A sphere, 0:79 of an inch in diameter, was turned out of it, and
on its surface was traced the equatorial circle, indicating the cleavage plane, and any
meridional circle passing through the magnetic axis. But this sphere, on account of
the electric currents excited within it, while it oscillates between the two poles, could
not be subjected to experiment in the same way as the sphere of sulphate of iron.
This is the case with regard to all substances enjoying a great conducting power, and not
being magnetically influenced in so high a degree as iron, cobalt, and nickel.

70. Therefore, in order to verify the theory which has been expounded with regard to
our sphere of crystallized bismuth, when suspended along its different diameters, we

462
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were obliged to recur to the formula (24.), expressing the moment of rotation (L) round
any vertical axis,
L=0¢(a?—0")sin29=¢(a®—¢*)sin’sin2y. . . . . . (39.)
In this formula the angle between the vertical great circle of the sphere passing through
the magnetic axis and the axial plane is denoted by &, and the angle taken on the same
great circle between the magnetic and the vertical axis by +f. Denoting the value of
the moment corresponding to =90° where the magnetic axis is vertical, by L,, we
obtain :
L=Lesin®. . . . . . . . . . . . (40)

The angle 4/ remaining the same, the maximum of L corresponds to §=45°% denoting

this maximum by L°, we get
L=L’sin2y. . . . . . . . . . . . (41)

71. The sphere of crystallized bismuth was placed on a ring of very thin, not para-
magnetic, copper wire, attached by three silk threads to the platinum wire of the torsion-
balance. The centre of the sphere was brought into the middle point between the two
poles, its marked meridional great circle remaining always vertical.

When the equatorial great circle was horizontal, there was no sensible direction ; the
torsion-wire being turned through any angle, the sphere rotated round its vertical axis
through the same angle. 'When the equatorial circle was more and more inclined, the
directing power emanating from the poles, 4. ¢. the moment I, increased till the
equatorial plane became vertical, and therefore the magnetic axis horizontal. Let us
consider in a more special way this last case, corresponding to 4y=90° and the case
corresponding to =45°% 1In all cases the marked meridional plane points axially: so
it did in our two cases most exactly, after it had been brought by means of the torsion-
balance into that position while the current was interrupted. The current being esta-
blished, by turning the platinum wire the meridional circle was brought out of the axial
position. If the number of degrees through which the wire rotated be 3, and the decli-
nation of the meridional plane of the sphere from the axial position 9, the number
0—Y indicates the value of the moment of rotation in the corresponding position
of the crystal. The number of degrees (3—%) corresponding to different values of J,
but to the same declination & of the meridional plane of the crystal from the axial
position, is proportional to sin’. In our two cases these corresponding numbers are
in the ratio of 2:1. It was confirmed by experiment.

72. While in the first suspension the torsion-wire was slowly turned, the angle of
declination more and more increased ; but finally, just when it reached 456°, correspond-
ing to a certain value of 9, the crystalline sphere was suddenly driven into a nearly
opposite position of stable equilibrium. A similar reversion took place after a rotation
of the wire of the torsion-balance in the same sense through 180° more, and so on. In
our second case, we got the same phenomena, with this difference only; that the first
reversion took place when the torsion-wire was turned through a smaller number of
degrees. In both cases we made use of twelve of GRovE’s elements.
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In the first case, the value of 9, in the moment when the first reversion took place, in
two successive observations was found to be

5611
563/

295
300

Mean 562 ;

in the second case, we obtained

}Mean 297'5;
whence
2975 —45__252'5
562—45 — 517

=0498,

consequently very near the value of sin*=0-5.

73. The declination (¥') of the meridional plane, after the suspension of the crystal,
may easily be calculated. Let the number of degrees through which the meridional
plane rotates, when passing from the position of unstable equilibrium, corresponding to
3=45°, into the new position of stable equilibrium, be denoted by z, whence ¥ =z-45.
Then, according to (41.), we get

sin 2(7—135) ="~ 22—~

=3=45 °
whence

dr=gpios - - - .. (42)

In our first case, where 8—45=>517, we obtain

z=157-05, '=180°4-22° 3';
in the second case, where d—45=252-5,

z=147-30, §=180°4-12°18"

These values, according to an approximative estimation, agree with observation *.

* The same mode of experimenting may be applied to the general case of biaxal crystals, by substituting
for the formula (39.), Li=¢(a*—¢®) sin  sin ¢/ sin 29 ;

denoting, as we did before, the angles between the vertical and the two magnetic axes by ¢ and ¢/. When
the vertical axis successively coincides with the axes of greatest, mean, and least induction, the correspond-
ing moments of rotation are L, =¢(a*—¢*) sin’ wsin 29,
L, =¢(—¢%) sin 29,
L, =¢(a’—¢) cos? w sin 29 ;
whence, corresponding to any value of 3,
‘ L;:L,:L,=sinw:1:cos’w.

Hence we may determine by experiment the position of the two magnetic axes of a crystal in the follow-
ing new way, allowing of great accuracy. Attach the erystal, after having given to it the form of a sphere,
to the wire of the torsion-balance, and let there be no torsion when the sphere influenced by the poles takes
a certain direction. Let, successively, the axis of greatest, mean, and least induction be vertical, and deter-
mine in each suspension the number of degrees through which the torsion-wire, slowly turned, rotates till
the reversion of the sphere takes place. The sum of the numbers thus obtained in the first and the third case
equals the number obtained in the second case. The first number divided by the second equals sin’w; the
third by the second, cos®w; the first by the third, tan®w.
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IV. Position of the three axes of magnetic induction with regard to the primitive form, .
in crystals belonging to different systems.

74. A great number of crystals, the finest of which were supplied by the extreme
liberality of Professor Bor1ER of Frankfort, have been examined by myself in connexion
with Professor BEER, in order to establish their optic as well as magnetic properties,
with regard to their crystalline form. The results are published in two papers in
PoGGENDORFFs ¢ Annalen.” A third paper, ready to be sent to press nearly two years
ago, did not appear, since, according to the newly-adopted theory, I found it necessary
to present the results obtained by experiment in a different way. Irom these papers
are taken nearly all the observations referred to in this section.

75. In crystals having no plane of symmetry, there is not the least indication of the
position of the three unequal axes of magnetic induction. In no case has the position
of these axes been determined.

Sulphate of copper is a crystal of this kind, strongly exhibiting the extraordinary
action. I provided a sphere, turned out of a large crystal, in order to determine the
position of the three axes of induction, and hence the two magnetic axes. According
to art. 39, I intended to trace on its surface the two curves indicating the diameters
which point axially and equatorially, when the sphere, suspended between the two poles,
rotates successively round any two horizontal diameters. The practicability of this pro-
ceeding had been previously proved in the case of crystals belonging to a different
system ; but here we did not succeed, on account of the want of homogeneity of the
sphere of sulphate of copper, which in its different parts contained different quantities
of sulphate of iron *.

Cyanite furnishes another instance of extraordinary paramagnetic induction. Strongly
paramagnetic prisms of this mineral show the extraordinary action, when suspended
horizontally, in a sensible way, even under the magnetic induction of the earth. Rotating
round their horizontal axis, they point towards different azimuths.

Bichromate of potash shows very distinctly the extraordinary paramagnetic, racemic
acid the extraordinary diamagnetic induction.

76. The crystals having a single plane of symmetry may be referred to an oblique
prism with a rhombic base, the plane of symmetry passing through one of the diagonals
of the base. Two axes of paramagnetic induction always lie in the plane of sym-
metry, the remaining third one being perpendicular to it. When any crystal of this
system is to be examined, you may suspend it first along the line perpendicular to the

¥ All specimens of copper, except of English, which I had the opportunity to examine, were found
to be strongly paramagnetic, even such specimens as were obtained by galvano-plastic deposition; so were
all salts of its oxides. I was first inclined to attribute the paramagnetic condition in both cases to un-
mixed iron; but on closer examination, I convinced myself that oxide of copper is paramagnetic per se, and
so are all its salts ; in like manner as copper, dioxide of copper and its salts (sulphite of copper and ammonia,
Cu8+ Am S) are diamagnetic.
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symmetrical plane, and mark within this plane the directions both axial and equatorial.
These two directions, representing the two axes of induction within the symmetrical
plane, are not at all indicated by the crystalline form ; they are to be found by experi-
ment. The crystal, when successively suspended along each of the three axes of para-
magnetic induction, sets one of these axes twice axially, another one twice equatorially.
In the case of paramagnetic induction, the first axis is the longest, the second the short-
est. In the case of diamagnetic induction, the second axis, pointing twice equatorially,
is the longest, the first the shortest one. In both cases, the two magnetic axes lie
in the plane passing through these two axes of induction. Therefore the plane con-
taining the two magnetic axes is either coincident with the symmetrical plane, or is
perpendicular to it. 'We may distinguish three different cases, whether the crystal be
paramagnetic or diamagnetic: 1. the axis of greatest, 2. the axis of least, 3. the axis of
mean magnetic induction is perpendicular to the plane of symmetry. In the first two
cases, the plane containing the two magnetic axes is perpendicular to the symmetrical
plane, in the third case it falls within it.

Paramagnetic crystals. Diamagnetic crystals.
First case . . {Dlops1de.. . . Hyposulphite of soda (Na8§).
Red ferridcyanide of potassium.
. Acetate of soda.
Second case. .
Ce e e Acetate of lead.
{Formia’ce of copper.

Third case .
Acetate of copper.

77. The crystals whose primitive form can be referred to a right prism with a
rhombic base have three planes of symmetry, intersecting each other along the three
axes of magnetic induction. We can, as we did in the former case, determine, by
suspending the crystal successively along each of these axes, which of them is the
longest, mean, and shortest. The two magnetic axes, always to be sought within the
plane of the longest and the shortest axis of induction, lie in any one of the three
planes of symmetry. We may distinguish six different cases, as well of paramagnetic
as diamagnetic induction.

We shall denote, as we did in the first section, the axis of the right prism, the shorter
and the longer diagonal of its base, by «, #, A, the longest axis of the ellipsoid of induc-
tion (art. 47.) being always «¢’, the mean #?, and the shortest ¢>. The six cases above
mentioned may then be enumerated thus:—

a v ¢
falling within
1. # « A paramagnetic, Sulphate of nickel.
....... , Sulphate of nickel and zinc.
diamagnetic, SEIGNETTE’S salt.
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3. « =z A diamagnetic, Aragonite.
...... , Sulphate of zinc.
4. A =z « paramagnetic, Staurolite.
....... , Ferridcyanide of lead (3PbCy + FeCy3).
....... , Sulphate of zinc and iron.
..... . ., Sulphate of magnesia and iron.
diamagnetic, Anhydrite.
...... , Hyposulphate of soda (NaS).
5 « A =z
x A o« paramagnetic, Ferridcyanide of potassium.
diamagnetic, Sulphur.
...... , Citric acid.

>

In the cases 1 and 2, the two magnetic axes lie in the base of the right prism; in the
cases 3 and 4, in the plane passing through its axis and the longer diagonal of its base ; in
the cases  and 6, in the plane passing through its axis and the shorter diagonal of its base.

In all cases, either the acute or the obtuse angle between the two magnetic axes is
bisected by the axis of greatest magnetic induction. 'We shall count the angle 2« from
0° to 180°, this angle being always bisected by the axis of greatest induction. [If this
angle be counted up to 90° only, we may, analogously as in optics, according as the
acute angle between the magnetic axes is bisected by the axis of greatest or by the axis
of least induction, call the crystals magnetically positive or negative.]

78. In crystals having one straight line of symmetry—primitive form : rhombohedron,
prism with a hexagonal base, prism with a square base—the ellipsoid of induction
becomes a spheroid whose axis of revolution coincides with the line of symmetry. This
line is likewise the magnetic axis. We meet in each of the two cases of magnetic induc-
tion with two classes of crystals. Here the crystals of the first class shall be called
positive, of the second class, negative. In positive crystals the line of symmetry coincides
with the axis of greatest paramagnetic or diamagnetic induction, in negative crystals
with the axis of least induction. A wuniaxal crystal, when suspended along any ver-
tical axis, sets, if paramagnetic and positive or diamagnetic and negative, its magnetic
axis in the axial; if paramagnetic and negative or diamagnetic and positive, in the

equatorial plane.
Paramagnetic crystals.

Positive (a*=107%). Negative (0*=¢).
Carbonate of iron. Tourmaline.
Scapolite. Beryl.
Green uranite. Dioptase.
Sulphate of copper and calcium. Vesuvian.

Sulphate of magnesia (containing iron).  Sulphate of nickel.

Chloride of ammonium and copper
(Am Cl14CuCl+4-2 aq).
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Diamagnetic crystals.

Positive (a’=b%). Negative (*=¢?).
Calcareous spar. Bismuth.
Antimony. Arsenic.

Molybdate of lead. Ice.

Arseniate of lead. Zircon.

Sulphate of potash. Honeystone.
Nitrate of soda. Cyanide of mercury.

Arseniate of ammonia.

79. In all crystals belonging to the fesseral system, the ellipsoid of magnetic induc-
tion is reduced to a sphere, its three axes being equal to each other. There is 7o extra-
ordinary action.

80. In different biaxal crystals the angle (2») between the two magnetic axes passes
through all degrees from 0° to 180°. It is about 90° in sulphate of zinc. It is small in
staurolite, near 180° in SEIGNETTE’S salt. In both cases the two magnetic axes approach
to the longer diagonal of the base of the primitive right prism; in the first case the
difference between the greatest and mean, in the second case the difference between the
mean and least axis of induction is small. Along the longer diagonal the paramagnetic
induction of staurolite is greatest, the diamagnetic induction of SEIGNETTE’S salt least.
The plane containing the two axes has been determined by observation; it passes in the
first case through the axis of the prism, in the second case it coincides with its base.

But if, in the case of three unequal axes of induction, the difference between any two
of these axes becomes too small, the crystal, when examined between the poles, will
exhibit the appearances of a crystal with only one magnetic axis. Crystals of this kind
are the following ones :—Sulphate of iron, succinic acid, borax, cyanide of nickel and
potassium.

Sulphate of iron, showing very strongly the extraordinary paramagnetic induction,
may be regarded as a positive uniaxal crystal ; its magnetic axis coincides with FRESNEL'S
axis of greatest elasticity, being, within the plane of symmetry, inclined 75° to the
cleavage plane.

Succinic acid, showing strongly the extraordinary diamagnetic induction, may be
regarded as a positive uniaxal crystal, whose magnetic axis coincides likewise with
FresNEL’S axis of greatest elasticity.

Borar may be regarded as a diamagnetic negative crystal; its magnetic axis, coin-
ciding with FRESNEL’S axis of least elasticity, is perpendicular to the plane of symmetry
(the cleavage plane).

Cyanide of nickel and potassium also ranges among diamagnetic negative crystals; its
magnetic axis coincides with FRESNEL’S axis of least elasticity, and accordingly lies in
the plane of symmetry.

81. A crystal not belonging to the tesseral system will nevertheless show no extra-
ordinary magnetic action, if all its three axes of induction are nearly equal to one

MDCCCLVIIL 4u
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another. This is the case in the following crystals :—Oxide of iron (Eisenglanz), yellow
ferrocyanide of potassium, cyanide of copper and potassium, quartz, sulphate of potash
(whose primitive form is a rhombic prism), and topaz.

Note added during the printing of the paper.

The analogy between the phenomena presented by crystals in the case of light trans-
mitted through them, and in the case of magnetic induction, may be fully explained by
the circumstance that in both cases the laws of these phenomena depend upon an auxiliary
ellipsoid. The diameters of the optic auxiliary ellipsoid represent the values of the
reciprocal of the elasticity of the ether within the crystal; two of its axes coincide with
the directions of the greatest and the least elasticity, the third and mean axis being
perpendicular to these. On the other hand, the axes of the magnetic auxiliary ellipsoid
are directed along the lines of the greatest, the least, and the mean magnetic induction,
and their lengths represent the values of the reciprocal of these three inductions. This
analogy becomes the more perspicuous and striking by the fact, that in the first case
the optic axes, 1. e. the two directions along which there is no double refraction, are per-
pendicular to the circular sections of the optic auxiliary ellipsoid ; while in the second
case, the magnetic axes, 1. e. two lines such that the crystal on being suspended along
either of them, between the two magnetic poles, is not acted upon by these poles in any
extraordinary way, are perpendicular to the circular sections of the magnetic auxiliary
ellipsoid.

In crystals with only one principal crystallographic axis, both auxiliary ellipsoids, the
optic and the magnetic, become ellipsoids of revolution whose principal axis coincides
with the crystallographic axis. In crystals whose primitive form is a right prism with
a rhombic base, the three axes of both auxiliary ellipsoids are directed along the three
principal crystallographic axes, but in both cases there is no indication at all given
about the relative length of the three axes. In crystals belonging to the monoclinic
system there is only one axis common to both auxiliary ellipsoids, this axis being
perpendicular to the symmetric plane; the two remaining axes of both ellipsoids lie in
this plane, where their position, not indicated by any general law, may be easily found
by observation. In triclinic erystals there is no indication whatever given by the
crystallographic form, regarding the position of the axes of the two ellipsoids, and there-
fore the determination of these axes is more difficult.

When a plane luminous wave is transmitted through a crystal along any direction,
the vibrations in the front of the wave take place along the two axes of the ellipse, in
which the optic auxiliary ellipsoid is intersected by the front. Experimentally these
directions are determined by putting a plate of the crystal, bounded by faces parallel to
the front of the wave, on a polarizing apparatus, and by turning it till it appears dark.
Then one of the two directions of vibration lies in the primitive plane of polarization,
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the second is perpendicular to it. On the other hand, when a crystal is perpen-
dicularly suspended between the two magnetic poles along any diameter of the magnetic

" auxiliary ellipsoid, one of the two axes of the horizontal elliptical section of this ellipsoid
will point axially, the other equatorially. FrESNEL showed already that, by a simple
geometrical construction, the two directions of vibration of any plane luminous wave
may be deduced from the position of the two optic axes. I showed in the preceding
paper and proved it by observation, that exactly the same construction gives the position
of a crystal freely oscillating between the two poles of a magnet; the two horizontal
lines pointing axially and equatorially are immediately obtained by projecting the two
magnetic axes on the horizontal plane, and by bisecting the angle between these pro-
jections. In treating the inverse problem, “to find the magnetic axes of a crystal after
having determined by observation the position which the crystal takes between the two
poles, when suspended along any known direction,” I proposed trigonometrical formulze,
which may be generalized in the following manner. Suppose OX, OY, OZ to be the
three principal axes of induction, without knowing their relative values; let, within the
suspended crystal, MON be the horizontal plane passing through the centre O and
intersecting the principal plane OZ along OM; let ON be, within the horizontal plane,
the line pointing either axially or equatorially. Denote by ¢ the angle between the
planes MON and XOZ, by « and A the angles MOX and NOM. Thus the position,
within the crystal, of the horizontal plane is determined by the angles ¢ and «, the
position of the crystal by the angle A. After having determined, by means of the
following two equations,

tan A

tan (ﬂ +06)= -—ma
' CoS A

tan (n -]-oa): cos ¢,

the two auxiliary angles » and #/, calculate the value of the expression tanz tans. This
value may be found to be either positive or negative ; if negative, the absolute value may
be either <1 or >1. Thus we obtain ¢/ree different cases.

The position of the two magnetic axes is fixed by knowing the principal plane con-
taining both axes, and the angle between each of them and a given one of the two axes
of magnetic induction lying in the same plane. Denoting this angle by «, we have, in
the first case,

tan » tan 4’ =tan® «.
Both axes lie in the plane XOZ, » being the angle between each of them and the axis
OX. The last formula holds in both cases; the axis OX may be the axis of the greatest
or of the least induction. From this axis the angle & is to be measured.

In the second of the three above-mentioned cases, we obtain

tan s tan 4 = —sin? w.

The two magnetic axes lie in the plane XOY, perpendicular to the plane XOZ, and
412
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intersecting this plane along OX, which may be the axis of greatest or least induction.
The angle w is to be measured from OX.
In the third case we have

!

tan s tan 4§ = ————-

The two axes are situated in the plane ZOY perpendicular to the plane XOZ, and in-
tersecting this plane along OZ, which may be the axis of the greatest or least induction.
The angle » is to be measured from OZ.

In the preceding paper I gave only the formule of the first case, where I supposed OX
to be the axis of greatest induction. From this formula the others are easily deduced.

The magnetic axes of a crystal, either paramagnetic or diamagnetic, not examined
before, whose primitive form is a right prism with a rhombic base, may, for instance,
immediately be found by means of these formule. In this case, let the axes OX, OY
and OZ coincide with the crystallographic axes in any order whatever; cut by parallel
planes, whose inclination to these axes is known, a plate out of the crystal; let this plate
oscillate horizontally between the two poles of the magnet, and mark on its surface a line
pointing either axially or equatorially. Thus the angles ¢, « and A being determined,
7 and 7, as well as tan 7' tan #/, can be easily calculated. The sign and the value of the last
expression shows by which of the last three equations the angle » is to be calculated,
and immediately indicates in which of the three principal planes the two magnetic axes
are situated.

The position of the optic axes may be found by the very same formule. If we make
use of the former plate, the angles ¢ and « remain the same, the angle A only varies, and
is to be determined by means of a convenient polarizing apparatus.

The optic axes relative to different colours being dispersed in the same principal plane,
and even passing in certain cases from one principal plane to another, we cannot be
surprised that the optic and magnetic axes are differently directed, and placed either in
the same or in different planes. In ferrideyanide of potassium, for instance, the axis of
the right prism is the axis of the greatest optic elasticity and of the least magnetic
induction ; the longer diagonal of the base is the axis of the least elasticity and mean
induction ; the shorter diagonal the axis of the mean elasticity and greatest induction.
Therefore the two principal planes, containing the optic and the magnetic axes, inter-
sect each other along the axis of the prism. In the case of sulphate of zinc, the axis of
the prism is the axis of the mean optic elasticity and of the greatest diamagnetic induc-
tion; the longer diagonal of the rhombic base is the axis of the least elasticity as well as
of the least induction ; the shorter diagonal is the axis of the greatest elasticity and the
mean induction. Accordingly the two optic axes lie in the base of the prism, the two
magnetic axes in the plane passing through the axis of the prism and the longer
diagonal of its base. In the case of formiate of copper, the mean axis of paramagnetic
induction and that of optic elasticity are both perpendicular to the symmetric plane of
the crystal; therefore the two optic axes and the two magnetic ones lie in this plane.
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By turning, within their plane, each of the two optic axes for violet light in the same
direction, these axes will pass into the position of the axes for red light, and afterwards,
by turning still in the same direction, into the position of the magnetic axes. In com-
mon with Professor BEgr, 1 examined a great number of crystals, in order to find a
general law between the position of the magnetic axes of a crystal and its optic axes
for the different colours, but without a satisfactory result. The laws mentioned in the
second paragraph of these additional pages, by means of which we can in the simpler
cases deduce from the primitive form of a crystal the position of the axes of both auxi-
liary ellipsoids, the magnetic and the optic—and also of all such auxiliary ellipsoids
regarding, for instance, molecular elasticity, conduction of heat and electricity—are all
we know.

T added this note to my original paper, in order to explain more distinctly than I did
before the analogy between the optic and magnetic axes, which guided me during the
different stages of my researches on the magnetic induction of crystals. My intention
was not at all to enter into the mathematical solution of the great physical problem.
All my experimental researches follow from the mere fact, that there exists an auxiliary
ellipsoid of magnetic induction. The supposition of molecular ellipsoids of isotropic,
paramagnetic or diamagnetic matter, is to be regarded as a means of discovering the
mathematical laws to which the couple, tending to turn round a magnecrystal in a uni-
form field, was subject, and not as establishing these laws on a basis of molecular physics.
Such a basis is to be obtained by Professor W. THoMson’s theory only, which I highly
regret not to have known when I wrote my paper. From this theory too, an abstract
‘of which appeared in the Philosophical Magazine (March 1851), the above-mentioned
auxiliary ellipsoid follows. Theoretically speaking, it was wrong to replace it by Pors-
soN’s auxiliary ellipsoid, but this mistake does not in the least way affect the object of
the paper presénted to the Royal Society.



